LEVEL —
O
gi:?:ﬂgzgg§§GCt Cc-250-200

ADA EDUCATION
FOR
TECHNICAL MANAGERS

&
4

ADAOS7TS524

By
John F. Passafiume

Prepared for

Defense Advanced Research Projects Agency

Contract DASG60-8 -C-0041 r:) ! '(:

: ™ ELECTE
F"”““?Qm 2. APRO 9 1081 7

_

o T o A s

Georgia Institute of Technology

Engineering Experiment Station

i 81 4 09 132

| s sum pa gAY B BN U BN S B IR BN EE BE O I B SR

F

P———

SECURITY CLASSIF:CATION OF THIS PAGE (hen Dere Entered)

REPORT DOCUMENTATION PAGE
m

READ INSTRUCTIONS
BEFORE COMPLETING FORM
PIENT'S CATALOG NUMBER

ACCESSION NO |

C6EM3 Education for Technical Managers . f

. ﬂ'uqf-h-uum

FINAL REFeRT.]

! 9%:1'-— 31 Decombew BEE ?

%
CWANT NUMBER s)
/‘ DASGRU-QG—C-WAI
- PERFORMING ORGANIZATION NAME AND ADDRESS [
t ce AREA & WORK UNIT NUMBERS '

Engineering Experiment Station

“Tl'_rfl—r‘n—rrl—fm— Centrell
'%:1 istic Missile ‘vance Te 'o c?é'if"

6. DISTRIBUTION STATEMENT (of this Report)

Georgia Institute of Technolegy, Atlanta, GA 6.2.7.0.8.E.
11. CONTROLLING OFFICE NAME AND A . 2. REPOAY
fense Advanced .ﬁesearcw?rojects Agency
ATTN: Program Management /MIS 3 Maren 1981 /

1400 Wilson Blvd., Arlington, VA 22209

400

18. SECURITY CLASS. (of this report)

UNCLASSIFIED

tcf ASSIFICATION DOWNGRADING
HEDULE

P. 0. Box 1500
Huntsville, 35807 ‘Vdj

‘,.—

Approved for public release, distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Bleck 20, If ditferent from Report)

19. SUPPLEMENTARY NOTES

19. XEY WORDS (Continue en reverse side il necessary and identily by bleck number)

Computer Programming
Computer Software
Programming Languages
Software Management

20 ABSTRACT (Continue an reverse side M necessary and Idontily By block numbe-)

DD ,°5a: W75 €oirion o 1 wov es 15 cesoLETE

This report summarizes the efforts of the Georgia Institute of Technology to
develop a model course entitled "Ada Education for Technical Managers." The
course was developed by the joint efforts of the Engineering Experiment Statio
and the Department of Continuing Education. The overall goal was to develop a
set of course materials that could be provided to DoD or other interested
participants at the cost of reproduction thru proliferating knowledge of the
Ada language throughout the community. Two sub-goals of the program were to
present the model course on two occasions to DoD personnel and to develop a

UNCLASSIFIED A

SECURITY CLASSIFICATION OF THIS PAGE ‘When Dara Entered)

/5385

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Dote Rntered)

videotape version of the course that would also be made available, At the
request of the government one of the two course presentations was relocated
from Atlanta, Georgia to Fort Belvoir, Virginia. The resulting contract
modification deleted the requirement for developing the videotape version
of the course as there were insufficient funds available to procure this
item.

UNCLASSIFIED

SECURITY CLASSIFICATION OF TiiS PAGE(When Dote Entered)

.
——

-y

GEORGIA INSTITUTE OF TECHNOLOGY
ENGINEERING EXPERIMENT STATION

Sponsored by

Defense Advanced Research Projects Agency (DoD)
ARPA Order No. 3922

Monitored by

Ballistic Missile Defense Advanced Technology Center
Under Contract No. DASG60-80-C-0041

EREE vy TR XD
5

Ada Education for Technical Managers

hccession For 1
: \TIS GRA&I P a
FINAL TECHNICAL REPORT DTIC TAB]
EES/GIT PROJECT C#250 Unannounced O
Georgia Tech Research Institute Justification
By !
January 15, 1981 _Distributicn/

Availability Codes

" lAvatl andfor |
by Dist Spectal

John F. Passafiume, (404) 894~3417 1*

Computer Science and Technology Laboratory
Engineering Experiment Station
Georgia Institute of Technology

The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily representing

the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U. S. Government.

ABSTRACT

*he goal of this project was to develop a model course in the Ada language to
train technical managers in its use with embedded command and control systems.
The course was developed under the guidance of the Higher Order Language
Working Group's sub-committee on training and was presented to DoD technical
managers at two separate sessions. It was originally intended that a video-
tape version of the course would be developed and made available throughout
the DoD as well as industry. This effort had to be dropped due to a reduction
of the available funds. Course material in the form of viewgraph transparency

masters, course outline, Wnd course notes have been provided to DARPA and are

currently under review.

TABLE OF CONTENTS

Section Page

1. INTRODUCTION 1
11. TASK OBJECTIVES 3
111. GENERAL METHODOLOGY 5
1v. RESULTS AND CONCLUSIONS 10
v. RECOMMENDATIONS 13
VI. REFERENCES 14

APPENDIX - COURSE MATERIAL ADA EDUCATION FOR TECHNICAL MANAGERS

it

1. INTRODUCTION

"~ To cope with the increasingly costly and difficult problem of defense system

software management, the Department of Defense established the High Order
Language Working Group (HOLWG) in 1975. The mission of the HOLWG was to
formulate DoD requirements for high order languages, to evaluate existing
languages against those requirements and to implement the minimal set of
languages for DoD use. As an administrative initiative, DoD Directive 5000.29
mandated the use of HOLs in new embedded computer systems and DoD Directive
5000.31 gave an interim list of approved HOLs. The HOLWG developed a coordi-
nated set of requirements for a common DoD HOL. The group determined that
none of the existing languages fully satisfied these requirements and that a
single language meeting the requirements was both feasible and desirable. The
Ada language was the result of an extensive design, development and test and
evaluation effort. Steps in the ongoing phase of the program include produc-
tion of compilers and other tools for software development and maintenance,
control of the language, and validation of compilers. It is intended that
government~funded compilers and software tools as well as the compiler vali-
dation facility will be widely and inexpensively available and well main-

tained.

This course, Ada Education for Technical Managers, was designed to provide
military contractors and end-users with the necessary background to under-
stand the value and impact of the Ada language concepts and features. An

integrated approach to Ada instruction is used in which both management and

technical rationale and data are provided. The course includes motivational

and management level information required by technical managers who have the
responsibility to make programming language decisions, to justify those deci-
sions, and to assure acceptance and smooth introduction of a new programming
language. In addition, sufficient technical specifics of the language such as
its design philosophy, constructs and syntax are given to enable the technical
manager to see the benefits of using Ada in software systems and using its

sophisticated features as they were intended.

This report summarizes the efforts of the Georgia Institute of Tech-
nology to develop the model course. The course was developed by the joint
efforts of the Engineering Experiment Station and the Department of Con-
tinuing Education. The overall goal was to develop & set of course materials
that could be provided to DoD or other interested participants at the cost of
reproduction thus proliferating knowledge of the Ada language throughout the
community. Two sub-goals of the program were to present the model course on
two occasions to DoD personnel and to develop a videotape version of the
course that would also be made available. At the request of the government
one of the two course presentations was relocated from Atlanta, Georgia to
Fort Belvoir, Virginia. The resulting contract modification deleted the
requirement for developing the videotape version of the course as there were

insufficient funds available to procure this item.

Georgia Tech has completed the effort on this project and provided copies

of all course materials to the sponsoring agency.

R o L

-

I1. TASK OBJECTIVES

The overall project objective was to develop teaching materials to be
used in a one week Ada education course for technical managers. This included
a course outline, lecture notes, viewgraphs, and videotapes. The course was
tailored for persons having software management and decision making responsi-
bilities. The course described the background motivation and merits of Ada
and provided sufficient exposure to the language such that course partici-
pants could perform nontrivial tasks using the Ada language. In carrying out
the proposed effort, Georgia Tech performed the following tasks.

Task I - Review of Current Ada Documents

A review of reference manuals and teaching materials currently available
for the Ada programming language was conducted. This task required minimal
effort and time, but served to acquaint project personnel with modifications
to "older" documents and the status and content of materials already under
development.

Task Il - Design of Ada Course Outline

GIT/EES and ICS personnel designed and specified the structure and con-
tent of the proposed model Ada language course. The design was presented to
the HOLWG Advisory Committee on Ada Education and Training for comment and
approval before detailed course development was initiated. The design con-
sisted of an annotated course outline and discussion of the approach, philos~
ophy and rationale. Drafts of the course outline were distributed to other
cognizant specialists for their suggestions and comments.

Task 111 - Course Development

F
3
e AMJ

3 B
. d — . b G B o A A 0 0 e, i e, i . . —

s A R i

GIT/EES and ICS personnel developed the course materials required to
teach Ada. Considerable attention was paid to continuity and clarity of
examples and explanation and demonstrztion of abstract concepts and special
language features. The order in which subcomponents of this task took place
followed that of the outline produced in Task II. This task consumed the '}

majority of the project time and effort.

£ k< = ek D B WA DA 0,5 1 i R -

5 Task IV - Presentation of Course to Government Personnel

As part of developing and evaluating the model Ada language course, EES

presented the course twice to government personnel. These courses were

Ty

offered on the Georgia Tech campus and at Fort Belvoir, Virginia. During the i

;
!
1
:

five days of the courses, instruction and workshops were conducted eight hours
per day.

Task V - Presentation and Reports

Additional oral presentations (IPRs) were given during the term of the
contract. A final report and briefing along with a copy of all teaching aids

developed as part of this contract are being provided to DARPA.

I1I. GENERAL METHODOLOGY

The development of the Ada Course was based upon an integrated approach

to Ada Instruction. It was determined that the form and content of the Ada

course must be consistent with the goals for which Ada was developed and the

methods used in this development. (See reference 5). It was understood that

the future success of the Ada programming language in helping to resolve the
DoD software problem would be frustrated if Ada itself were misused. There-
fore, it was considered critical to provide background not only on the mech-
anics of using Ada features but also on the rationale for including specific
features in Ada in the chosen form.

The course was designed to include the motivational and management level
information required by technical managers who have the responsibility to
make programming language decisions, to justify those decisions, to assure
acceptance and smooth implementation of a new programming language and to meet
project objectives within time and cost constraints. In addition, sufficient
technical specifics of the language such as its design philosophy, constructs
and syntax would be given to enable the technical manager to write non-trivial
programs in Ada and equip him to direct large scale software development in
Ada using its sophisticated features as they were intended.

In this way it was felt that the course would guide the participants from

the more traditional style of programming and software management to the

modern philosophies that are encouraged and supported by Ada. For example,

the economic and reliability incentives of top-down and structured program-

ming, strong data typing and encapsulation would be emphasized.

Many features of Ada are new to most programmers or require usage that is

L AU

$ —4

different from other languages. Some of the features may not be clear from

L

merely reading the Ada reference manual. Ada, because of its innovative
approach, demands new ways of thinking and provides new capabilities for
. management. Many of the language innovations deserve careful presentation

and appropriate emphasis. Insufficient explanation and motivation of certain

features would likely lead to their misuse or disuse by both programmers and

managers. Some unique Ada features and associated issues are listed below:

o strong typing benefits gained through static checking
enhanced reliability
reduced cost of debugging
improved readibility
subtypes - concept of dynamic constraints
derived types - added security over subtypes
enumeration types - improvements to readability
array types - slices
- specification of indices with type marks
(dynamic arrays)

o string types - examples of flexible string usage supported by
Ada

o record types - protection for variants and their discriminants
provided to prevent aliasing (enhance relia-
bility)

0 access types - explanation of static versus dynamic entities
and declaration as opposed to allocation

- lifetime of dynamic objects
- efficiency considerations
using access types instead of index computations
with array types
changing access-variable values versus moving
data
- dangers inherent with access types
problems which can occur when more than one
access variable refers to the same object
use of unintialized access variables
o type conversion - why no implicity coercion
- qualified expressions
- distinctions between explicit coercion and
resolution of ambiguities
. o aggregates - concept of "value"
- positional end named notation in component
association
- distinct usage of discriminant constraints
o structured statements - disciplined and effective use
choosing the appropriate statement for & given
situation
. o transfer of control - responsible use of "exit," "goto," and “return"
statements
6

<

0 0090

o
|
i

[—

- exceptions
definition
proper use
implications for verifiability
dangers - e.g. unwarranted assumptions
o0 assert statement - value in verifying program correctness
- use in validating
o formal parameter modes - security of static checking

- prevention of subtle program dependencies on the

particular method of parameter passing used
o overloading = clarification

o visibility rules - visibility restrictions
- interaction with separate compilation feature
o separate compilation - benefits

individually compile and test different units of

a program or software system

flexibility in the order of implementing units

minimization of cost of recompilation after

changes
o generics - providing proven, parameterizable components
for software construction
o data abstraction - in terms of packages and generics
o modules - physical and logical interfaces

- visible and private parts of specifications
- separation of the logical interface from the
implementation
- support of Top-Down design
It was considered to be especially important that managers know how
proper use of packages can make the lower levels of developing software

visible to them and allow them to control the interaction of lower program

units by controlling their interfaces. Also, the ability provided by the

‘Package feature to impose intelligible organization on both software systems

and software development operations must be made clear.

One of Ada's strong points is its facility for multitasking. Tradi-
tionally, multitasking has been implemented with relatively undisciplined, ad
hoc methods. Processes which are inherently parallel have been forced into
sequential formats due to the constraints and limitations of the programming
language used. Ada, however, provides a convenient mechanism to express
application situations and problem solutions in a form more closely repre-

senting their "real world" construct. For many, a fundamental introduction to

the concept of multitasking may be necessary., 1In addition an appreciation for
the security, simplicity and flexibility of task interaction provided by the
rendezvous feature of Ada should be provided.

In summary it was apparent that the traditional didactic method needed to
be supplemented with new teaching aids more appropriate to Ada.

Model Course

Ada incorporates enough new programming language constructs and design
concepts such that techniques employed in teaching traditional programming
languages would be grossly inadequate for a satisfactory presentation of the
language. As the examples of the previous section demonstrate, Ada contains a
rich repertoire of new language features, many of which would be unfamiliar
even to highly experienced application programmers. Therefore, it was mneces-—
sary that innovative methods be developed if the material is to be presented
1) in a well organized, clear fashion and 2) in a sufficiently short period
such that programming managers can afford to set aside the time to attend a
course. It is believed that the demand for Ada training will be very signif-
icant in the near future and that numerous organizations, institutions and
individuals will want to serve that need. All of these will be faced with the
requirement to develop teaching techniques suitable for the unique features
of Ada as well as to tailor the instruction to their specific intended audi-
ence.

The quality of these courses is important to the success of the Ada
language in meeting its stated objectives; however, most vehicles for course
quality control are not very feasible. For example DoD could control the
quality of Ada training and education by 1.) undertaking the instruction
responsibility or 2.) certifying courses developed and taught by others.

Neither of these options would be particularly attractive to an organization

that is neither staffed nor chartered to perform these functions. Another

possible vehicle for quality assurance is to provide a DoD approved model
course to anyone wishing to develop a course in Ada. The wmodel course was

intended to be a good exemplar for those wanting to develop their own innova-

tive teaching methods and a needed supplement for those who lack either the
time or desire to undertake such an endeavor. In either case an acceptable
foundation on which to build specialized courses would be available. EES
proposed to develop such a course in close interaction with the HOLWG Advisory
Committee on Ada Education and Training. The product of this development
effort was to be a set of approved teaching materials and aids to be used in a
five day training course; a course outline, lecture notes and viewgraphs,
class hand-outs, sample problems and 15 hours of video taped lectures. All of

these materials would be delivered to DARPA and thereafter be in the public

domain.
In addition to the model course a set of realistic examples of Ada
programs would provide a valuable teaching aid. Many such examples were

obtained from Ada Test and Evaluation (T&E) participants and from others

developing Ada courses. Additional examples were developed as a result of

interactions with the Ada Education and Training Advisory Committee.

%k ot et

IV. RESULTS AND CONCLUSIONS

The initial guidance to Georgia Tech for the development of the course
vas provided on February 6, 1980 during a meeting of the Ada Education and
Training Advisory Committee (see Attachment I). The committee performed a
detailed review of the Georgia Tech model course and agreed that the course
was well into the design phase. (These early efforts were financed by Georgia
Tech as it was felt that such an important endeavor was worthy of our sup-
port.) Several recommendations were made, and it was agreed that Georgia Tech
would provide a new syllabus at the next level of detail with supporting words
describing the proposed examples and approach. Although it was agreed that
top-down decomposition would be an excellent way to introduce concepts, it was
generally agreed that the participants first needed an understanding of the
basic facilities and control structures. It also appeared desirable that a
set of machine readable, documented examples be collected. Finally, it was
agreed that the success of courses would be enhanced by the availability of a
translator, even if inefficient, so that students can get a few programs

running.

An Ada Model Course review was held at Georgia Tech on April 28, 1980.
During this meeting, representatives from the Ada Education and Training
Committee were presented with a revised course outline and also reviewed
several proposed examples intended for use during the course. As a result of
this meeting and ensuing discussion, further changes were made to the course

material.

Another training meeting was held in Washington, D. C. on May 13, 1980.

The two primary instructors and course material developers for Georgia Tech

10

S . . et

b s 1 ot et Aot ML 1 A AR SR SR < i 5+ i 0 st St i D B 1= =

e bl & b bl

. -
.

attended this meeting. The material was generally well received, and it was

agreed that the content and direction of the course was appropriate.

Shortly after this meeting, Georgia Tech was asked by the sponsor to
consider moving the first of the two courses for DoD personnel from the
planned location at Georgia Tech to Fort Belvoir, Virginia. The stated reason
for this move was the shortage of travel funds in DoD. The sponsor was
advised that the funds remaining in the project could not allow for that move
and also cover the cost of developing the planned videotape version of the
course. The sponsor decided to defer development of the videotape version of
the course. A contract modification was subsequently issued cancelling the

videotape effort and directing that the first of the two DoD presentations be

moved to Fort Belvoir, Virginia.

The first of the two contract courses was presented at Fort Belvoir,
Virginia on 23-27 June 1980. One of the secondary purposes of the presenta-
tion was to provide a live audience for field testing the material. Most of
this aim was accomplished during the weeks' presentation. Many of the com-
ments were constructive and enabled Georgia Tech to provide for changes to the
material. Georgia Tech feels that the course could have been improved if a

software engineering approach had been used in its development.

Version control proved to be a major problem with the materials, espe-
cially since the language was not stable during the development phase and
Georgia Tech was constantly being required to react to changes. This had
considerable impact on costs, and funds for the remaining development ran out

before final preparation of the course material had been completed.

The second of the two contract courses was presented at Georgia Tech from

July 7-11 1980. The course was attended by 13 DoD personnel including the

11

I VIR

members of the Ada Education and Training Committee. In general, the course
went well and participants were receptive to the material and methodology. A
comment session was conducted on July 11 and the comments were, for the most
part, quite positive. The attendees were generally satisfied with the course
handouts and the visual aids. Most students felt, that as an overview for
managers, the course contained too much detail and too much programming.
Although the attendees were purported to be software managers, they professed
not to be interested in the programming details. (This is not consistent with
our view as to what software managers need to know to manage a large software
project and is a source of some concern if this is a prevalent view throughout

DoD.)

From the staff's viewpoint, Georgia Tech felt that the material was
presented at the proper level for industry technical managers. The reordering
of the material resulting from the comments obtained from the first presenta-
tion at Fort Belvoir appeared to be quite successful. The instructors were
more comfortable with the material and felt that the presentation went more
smoothly as a result of the changes. The committee representative indicated
that he was pleased with the course and felt it satisfied most of his needs.
He also recognized that it was a management course and felt that the level and

thrust of the presentation was quite appropriate.

On July 23, 1980, DARPA was provided with a then current set of all
training materials. Constant changes and delays in reception of the final
reference manual had severe impact on cost and schedule. Georgia Tech
received the final copy of the reference manual in August 1980 and made
applicable changes to the course material. Copies of all deliverables were

provided to DARPA in September-October 1980.

12

|
!
|

V. RECOMMENDATIONS

As we have not been provided with the results of the review of the course

material, we are unable to comment on any inputs received from the reviewers.

However, based upon our experience in the development and presentation of the
course to two DoD classes and two additional sessions under the auspices of

the Department of Continuing Education, the following recommendations are

provided:

a. Our experience in the development and presentation of the
course to two DoD and two Continuing Education classes have
shown that the course approach was valid. Therefore, future
courses in the teaching of Ada to DoD personnel should use this
course as a model.

b. The availability of a tramslator would have greatly enhanced
the value of the course. For an executive overview or manager
course it would have been an invaluable aid to understanding.
For a programmer's course a translator would be a necessity.
Therefore, all future courses should include the use of some
sort of translator. The NYU translator and interpreter will
shortly be available from the U. S. Army and should be consid-
ered as a vehicle to satisfy this requirement.

¢. The interaction with the Ada Education and Training Committee
was very useful and should be an element in the development of
any future Ada courses.

d. DoD should continue to explore the possibility of developing a
videotaped version of the course. User agencies/activities
could then supplement such a standard package with material
germane to their own specific requirements.

e. Georgia Tech spent considerable in-house time and effort in
the investigation of the use of color graphics for course
visuals. It is felt that this methodology offers significant
promise and future courses should consider its use, providing
the costs can be kept to a reasonable level. ?

f. A set of realistic examples of Ada programs would provide an
invaluable teaching aid. The development of such examples
should continue to be encouraged by the Ada Joint Project
Office. These examples should be provided to interested user
agencies at their request.

13

VI. REFERENCES

Unsolicited Proposal No. CS-SRD-0005-R1, "Ada Education fer Technical
Managers,” November 5, 1979.

"Preliminary Ada Reference Manual," ACM SigPlan Notices, Vol. 14,
No. 6, June 1979, Part A.

“Rationale for the Design of the Ada Programming Language," ACM SigPlan
Notices, Vol. 14, No. 6, June 1979, Part B.

"Reference Manual for the Ada Programming Language,” US Department
of Defense, July 1980 (Reprinted, November 1980).

“MCF, Part V: Software for Embedded Computers,” Military Electronics/
Countermeasures, July 1979, by Edith Martin and Edward Lieblein.

"Proceedings of the Ada Debut,"” U. S. Department of Defense, Advanced
Research Projects Agency, September 1980.

"Proceedings of the ACM-SIGPLAN Symposium on the Ada Programming Language,"
ACM SigPlan Notices, Vol. 15, No. 11, November 1980.

14

. Anacubiioaniindiinai, b o o N

‘> 1
. i
i '
{ :
e
]
£
!
i i
i 1
B

COURSE MATERIAL

ADA EDUCATION
FOR
TECHNICAL MANAGERS

1

TABLE OF CONTENTS '
Introduction to Ada ;
|

l

Example I - INTRODUCTORY EXAMPLE
Program structure, lexical units, declarations, i
basic statements (

Example II - PROCEDURES AND FUNCTIONS
Declaration and parameter modes, blocks, visibility,
type declarations, statements, type equivalence, operators
and operands

Example III - RECORD HANDLING
Packages, records and record aggregates, case
statement, input-output, program structure,
visibility, separate compilation

Example IV - ENUMERATION TYPES
Enumeration types, array aggregates, named
parameter association

Example V - OVERLOADING AND EXCEPTIONS
Overloading, exceptions, packages and exceptions

Example VI - LIST PROCESSING
Access types, data abstraction, generics,
discriminants, variant records

Example VII -~ FUNDAMENTALS OF TASKING
Task concepts

Example VIII - TASK INTERACTIONS
Entries, accept statements, rendezvous, task
attributes, select statements

Case Study I - PROGRAM DESIGN USING PACKAGES
A Text Formatter

Case Study Il - USING TASKS FOR SIMULATION
Telephone Switching Simulation

Case Study III - REAL TIME CONTROL
HELBAT BIFF

Summary

DOD'S ADA COMPARED TO PRESENT MILITARY STANDARD HOLS
A LOOK AT NEW CAPABILITIES®

Linda S. Scheer
Michael G. McClimens

Systems Consultants, Inc.
Dayton, Ohio

1.0 Abstract

The emerging DoD programming language, Ada,
promises to aid the software developer by offering
capabilities formerly considered outside the scope
of an HOL. Ada is PASCAL-like in its design and
includes such modern programming concepts as
strong data typing, blocking and hierarchical
exception handling. In addition to the
capabilities found in modern HOLs, Ada includes
some relatively new areas: real time processing,
libraries, and assertions.

This paper compares the present military
stancard languages, JOVIAL J73, CMS-2 and FORTRAN,
tc Ada in seven arcas: design criteria, general
syntax, data typing, control, functions, real-time
processing, and other advanced technigues. This
cormpar:son shows which areas are new to the HOL
arera, an¢ how modern programming techniques have
beer use? to increase the applicatility and
reliatility of tracditional HOL areas.

2.0 HOL Feature Study

Tne HOL Feature Study compares several HOLs
at a functional level and obtains their relative
rank:ng. Sections 3.C and 4.0 give the tasis for
our selection of the four HOLs analyvzed in the
feature study; Section 5.0 explains the
methodology used in the feature study; and
Section 6.0 analyzes the results of these scores.
The oprimary conclusions of the feature study are
as follows:

[] CMS-2, JOVIAL, and Aca fully support the
functional regu:irements of moct military
software systems.

Py FORTRAN 77 supports many types of
processing but 1s missing low-level 1/0,
partial word data manipulation, and
tightly packed records.

° J72 and Ada contaln significant
iaprovements over CMS-2 and FORTRAN in the
areas of reliability and maintainability.

®This work was sponsored by the Air Force Avicnics
Latoratory under contract F33615.78-C-1466.

® All four languages encourage the use of
structured programming control constructs.

® Ada and J73 provide strong typing (f.e.
grouping data .of like value ranges and
operations under specific type ranmes)
which allows significant reliatility
improvements in code.

® Although Ada is top rated according to
features. it will not be easy to learn and
it presents some difficulties to compiler
implementors.

3.0 History of High Order Languages

HOLs were originally developed 1in the late
fifties to present mathematical algorithms to a
computer. FORTRAN, one of the earliest, was
designed expressly to translate numeric formu.as.
ALGOL was somewhat more elegant in its apprcach,
but again its primary purpose was the express.or
of mathematical algorithes. The Air Force
subsequently developed JOVIAL by ta:iloring much of
ALGOL to the needs of conmrand and control systeXs.
Similarly, the Navy developed CMS-2 because it
needed more capability than the conventicra.l
languages possessed.

These early languages grew as the computer
technology grew. The old familiar languages were
modified and extended to meet new situations,
often situations not anticipated in the original
language. COBOL was defined to address the
problems of business data processing where
mathermatics 1s limites to financial area= and
there is a stronger need for mranipulatioern and
d.splay of character data. PL/?' was delined 1in
the md 60's 1in an attempt to bridge the
scientific and business application areas. As
such 4§t included the major features of COBOL as
well as those of FORTRAN, ALGOL, and JOVIAL.

All six of thesc major programming languages
were deafgned primarily an improvements in power
and capat!ltty over exiating language:. berefits
to programmers were derived from the continuous
addition of new features.

Not unti] the definition of FASTAL 1in W97
was a language formulated whose primary design
goal was to aid the programmer in developing his
software. It includes a rich set of data types
and allows only a small set of control structures

53¢

CHISS8- S- 1RO 0000- 0539500 78 ¢ 1980 TEEE

EE— Y

S

auprorting structured programa. The advent of
PAGCAL represents the polnt in computer acjenec
when suflftcient undersatanding of HOL problema and
beneficial HOL techniquea had been ccumulated to
address the proper engincerang of Lhese lanfuages.
The emphasis shifted from cxpreasiny the problem
for the machine to expressing the problem for the
programmer. Ada builds the philosophy of PASCAL
into a Jlanguage powerful enough to support large
software systems.

4.0 High Order Languages Selected

The evolution and major characteristics of
the languages selected for the HOL Feature Stuzy
can be discussed against this genera) background.
FORTRAN, JOVIAL, and CMS-2, three widely used
languages from the DoD list of approved high order
languages, were originally selected for this
study. Wnhen the Dod common high order language
effort remained on schedule and a single language
design for Ada was chosen in May, 1979, it was
decided to also evaluate Ada to keep the HOL
Feature Study 2t the state of the art.

The next step after selecting the four
languages was to choose the exact dialect for each
language. Each language presented its own special
protlems, Standardization has been a major
protler in the use of high order languages since
their inception. Throughout their h:story
preliferation of dialects and language derivations
have occurred ir spite of on-go.ng standardization
efforts. Recently these standardization efforts
have become increasingly stronger within the
hepartment of Defense and are just now Dbeginning
to exhibit results.

Altnocugh a standard for FORTRAN IV was
estatlished in 196¢, most current FORTRAN
compilers support a superset of FORTRAN 1IV. For
exawyple, the extensions tc FORTRAN supported by
these compilers incorpcrate more nodern
structuring techniques, reduce the rigidity of the
fixed formats for statements and comments, and
provide character manipulation facilities.
Although there is not a consensus in the selection
or the implementation of these extersions among
the various compilers, it would be unrealistic to
Yamit the evaluation of FORTRAN to the 10 year old
stanzard FORTRAN IV subset. In 1977, the ANS!
standard for FORTRAN was uptated to include
several of the more common extensions Such as
improved 1/0, blocked 1F-THEN-ELSE, character
string manipulations and wider use of expressions
in place of integers. However, few compilers that
support FORTRAN 77 are currently avajlabdle, In
order to reflect these improvements, the FORTRAN
feature study analysias i3 based on FORTRAN 77
(Ref.2) and Fu4pP (Ref.3), the FCHTHAN compiler for
PDP-11's, which 18 representative of commonly
avajlable extended FORTRAN compilers.

The JOVIAL language has been used by the Air
Force since 1959. It is a derivative of ALGOL and
was specifically modified to support command and
control systems. As an ALGOL derivative {t

contains the blocked structures necessary °~r

structured programrang ang has hadt a more freely

formatted %ource jnput than FORTRAN, Add)tior: 'f:
for command and control systems include low-level q
rather than hirft-level 170, lopical decinion r
making based on flars, and the capability to build ;
large nystemn consisting of several independently !1
compiled modules. i

|

Like FORTRAN, JOVIAL also suffered from the L
proliferation of dialects and minor d:fferences I
between implementations. In 1967, a version of i
JOVIAL J3 was established by the Air Force as its ;
standard progromming language for command and
control systems. In 1972 a committee report was |
accepted to modernize J3. The new dialect, J73/1, |
was adopted as the official Air Force standard,
but a JOVIAL implementation called J3b was
developed based upon a preliminary report from the
modernization commi tiee. Due to schedule
considerations, Jis was used on scveral
operational flight programs (Fl6 and B-1) and
underwent further modifications picking up strong
typing rules and tighter control of
inter-compilation unit interfaces. In late 1978,
the Air Force undertook an effort to standard.ze
on a single dialect of JOVIAL by incorporating the
proven capabilities of J3B into the otherwise more
modern J73/1. The result of this effort is knowr
as J73 and contains improvements over both J73/1
anc¢ J3B. The MIL-STD-15864 definition of JOVIAL
{J73) (Ref.4) has tecome the official Air Force
standard and has been selected for evaluation
under the HOL feature study.

S PR AW

The Navy has taken a much stronger approach
to the contrel and standardization o©f the:r
language, CMS-2. It is based upon the Comp:ler
System-1 {LS-7) first used by the NAVY circa 195,
When it was decided in 196€ to upgrade C(CS-1, the
task of coordirating the effort was given to what
is now the Fleet Combat Direction Systers Surpcrt
Activaty (FCDSSA). FCDSSA has complete control
over the generation and distribution of ali (MS-2
compilers within the Navy. In upgrading CS-1, 3t
was decided te include the best features of
existing languages while maintaining as much
compatibility as possible with existing CS-1
programs. As a result CMS-2 includes the features
of structured programming and the ability to
specify packed tatles for interfacing with
harcware defined data structures, but it also
contains more primitive constructs which are cfter
reduncant. {Ref. 5)

In addition to rigorously controiling the
CMS-2 language, the Navy has also standardized on
the processors to be used in its systems. The
AN/UYK-T is a large mainframe and the two
mini-computer families used are the AN/UYR-20 and
the Cp-bu2, Thus while CM5-2Y represents a
significant update to CM3-2, CM3.2M s percly the
tailoring of CMS-2Y to the AN/UYK-2(processor.
Although (MS-2 s falrly machine independent,
CMS-2¥ documentation gives the ampression of
machine dependency because of the processor
standardization and the strong hardware/software
association. Because 1t is the wmost recent
language definition. C(MS-2M, as delined in the
M-504S CMS-2Y (20) User Manual (Ref.6), was chosen
for the feature study analysis.

Unlike the other three lunguapea, Add has o
very ahort hintory. 1t I the result of an
intensive effort to atandardize on a aingle
Janguage for cembedided computer syatems throughout
Pob. The High Order Languages Working Group
(HOLWG) was organized in 1975. In reviewing the
exasting Jlanguages, the HOLWG found that no
exasting language satisfactorily met their broad
range of requircments. The HOLWG then began
succensively refining the language rcquirements
over a four year period. This process was highly
interactive, receiving inputs from numerous
contractors as well as the individual wmilitary
branches. Four preliminary PASCAL-like language
designs were evaluated and the language design
narrowed to two candidates, called RED (Ref.7) and
GREEN (Ref.8). The two design teams modifjed
these languages according to the final requirement
specifications found in the STEELMAN (Ref.9)
document ., As a result of an intensive evaluation
by both contractors and military teams, the GREEN
language design for Ada was selected in May of
1979. This will undergo a test and evaluation
period during which tests was run on an Ada
simulator. Final revisions to the Ada language
definition will be made in early 1980. The Ada
language as defined by the March 15 Reference
Manual for the CREEN Programming Language will be
evaluated under the HOL feature study.

5.0 HOL Feature Study Methodology

Tne common HOL language effort has resulted
in another major contribution to the HOL Feature
Stucy. Tne set of features usecd to compare
FORTHAN, JCVIAL J73, CMS-2M, anc Ada is based upon
the STEELMAN language requirements. STEELMAN
represents the culrm.nation of four years of
intensive discussion and interaction of literally
thousands of high order language users and
experts. We have reviewed these reguirements,
selecting € gereral goals and 4€ specific language
features required by emdbedded computer systems.

Project members independently weighted the 52
features from one to ten according to the
feature's importance with respect to general
programming requirements. After discussion, each
feature was assigned a general weight by group
consensus. Tatle I lists the 52 features, their
associaled paragraphs in STEELMAN and their
maximum programming weights.

Having thus arrived at a maximum score for
eact feature, specific scoring criteria were
developed to further quantify the analysis and to
facilitate consistency across language
evaluationa. The ascoring criteria were each
anatgned relative valuns 8o that their relative
impcrtance was maintained and their totals cqualed
the maximum allotted to the feature. Finally,
independent evaluations were performed on Ada,
J73, CMS-2 and FORTRAN.

541

6.0 Feature Stuay keaults

By quantafying the czcoranp an mach as
pnssible and aclectaing specific scoring criteria,
much of the HOL featurc stugy effort was
accomplished by the comparison approach. WwWith
mont features, determining the nurber of points a
particular language should receive was
strajightforward. Even though languages were
scored by more _than one reviewer, general
agreement occurred on the first pass and rinor
differences were quickly resolved. Lach feature
was resolved into a numdber of scoring criteria
which were evaluated independently. For example,
the "Bit Strings"™ feature was broker :into
assignment; equivalence or nuri-equivdlence;
complement, 1intersection, union ant¢ symmetric
difference,; and set membership (substrangs).
These were each assigned a maximur value of 2 or 3
and the languages were each scorec or tha! range
for that criterion. These results were summe¢ to
give the final score for that feature.

The remainder of this section correlates the

resulting feature study scores with the
conclusions stated earlier in the irntroduston tc
Section 2.C. lables 1 and 11 provide a su--.ory of

the raw scores and a grouping of the :ind:vidual
feature scores into more general categories.

The totals from Tatle I give an cordering of
the power of the four Jlanguages studiec. The
ordering (from weakest to strongest: FCPTRAN,
CMs-2, J73, Aca) is not surprising. FOFTKAN :@s
the oldest language and of the four is the orly
one not specifically dec:gred for m:litary
systems. Ada reprecents the most recent lanfuage
des:gn thecry ancd had the STEEL'AN requirements as
a gu:deline. Tne higher score of J7: over (MS3-2
reflects the inclusion of strenger UypInE,
exception handling, and stricter parazeter
matching in the recent J73 upgrade.

DPifferences between the lang.uages are
explained 1n greater detail ar Sections t.1 thru
€.4, which cover each language ind:vidually.

Before discussing the language differences,
we should point out the comnorality amcng the
larguages. Witk the revis:ons made in the 1977
version of FORTRAN, all four languafes now support
structured programming. This 18 1nd:cated by the
relatively higt subtctals for the CONTROL category
in Tatle 11. The point is further made that
FORTRAN and CMS-2 were penalized primarily for the
lack of short circuiting (not really part of
structured programming) and minor shortcomings
with respect to WHILE 1loops and loop EXITS.
(Refer to Features 23 to 32, Table 1.)

In fact, if 1the scores were adjiusted te
disrcgard strong typing, real time processing,
exception handling, and separate translation
facilities, the ascores for all four largaages
would be relatively consistent. Tr:s 1s not to
say that these features are rct ampertant. They
represent the major improvements made by Ada and

e

i
FEATURE STEELMAN ADA FOF J73 CMS MAX i
1.Reliability 14,8 W 5 8 5 10 *
DESIGN 2.Maintainability 1[4 8 5 8 6 10 !
CRITERIA 3.Efficiency 1] 5 6 6 6 9
4.Simplicity 1E 6 6 5 2 1
5.Machine Independence 10 10 9 7 S 10 !
6.Complete Definition H W0 & 7 8 10 .
7.General Syntax 2A,B,D 7 6 6 4 8
GENERAL B.Syntactic Extensions 2C 5 5 3 3 5
SYNTAX 9.ldentifiers 2E,F 6 2 6 3 1 ‘
10.Literals 2G,H g8 7 8 8 &)
11.Comments 21 9 8 1w 10 10
12.Strong Typing 3A,B,D g 1 4 3 8 :
13.Type Definitions 3¢,b 8 0 5 0 8 i
14 . Numeric Types 31A,D-H 9 7 100 10 10
_ 15.Numeric Operations 31B,C W 0 W 8 10 |
DATA 16.Enumeration Types 32A,B 5 0 & 0 5 ;
TYPING 17.Boolean Type 3C 5 3 5 4 5 l
18.Character Types 32D 8 5 8 5 8
19.Arrays 33A-E 0 7 8 7 10
20.Records 33F-H 8 o S5 & 8 :
21.1ndirect Types 331,J 5 0 3 2 5
22.Bit Strings 34A,B 5 2 5 3 5
23.Encapsulation 35A,B 5 0 2 0 5
24.Scoping 35¢C,5¢,G,7C 10 3 9 6 10
25.Declarations SA,B,D,F 0 & W0 9 10
26.Initial Values SE S 5 4 S5 5
27.Expressions 4a-G W 9 9 9 10 ‘
28.Control Structures 6A,B 8 6 17 6 8
CONTROL 29.Conditional Control 64,C 10 6 10 10 10
30.1terative Control 6A,E $ & W 6 1
31.Explicit Transfer 64,C 8 8 7 5 8
32.Short Circuiting 6D s 0 5 0 5
33.Procedures 7A,D 10 [} 9 7 10
34 Recursion 78 S o] 5 0 5
FUNCTIONS 35.Parameter Passing 7F-H 10 1 9 6 10
1/0 36.Aliasing 71 5 0 3 4 5
37.Low Level 1/0 84,E S 0 4 3 5
38.Hi Level 170 88,C,D,F 8 9 0 0 §
39.Parallel Processing 9A,B,H,I1,J L] 0 0 0 5
40.Mutual Exclusion 9C 5 0 0 0 5
REAL 41.Scheduling 9D ¥ 0 0 0 5
TIME 42.Real Time 9E s 0 1 15
PROCESSING 43.Interrupts ——— s 0 3 0 5
4u, Async. Termination 9G 5 0 0 4} 5
4S.Exception Handling 10A-E.G 9 0o 5 0 110
46.Assertions SF 3 1 1 o 5
47.Data Representation 11A 8 0 6 6 8
OTHER 48.Lang. Interface NE 10 4 W0 4 W
TECHNIQUES 49.0ptimizations 11¢,D,F 8 1 S 1 8
S0.Libraries 12A 6 2 1 8 9
51.Separate Trans. 128 8 7 1 8 8
52.Generfic Definitions 12D 5 0 1 0 5
TOTALS 373 177 290 210 394

Table 1. Functional Comparisons

542

to a lesser cxtent J73. The point to be made 13
that the remalning fcaturca would represent
functional capabilitiea sufficient for many
problems. All four languages provide these
functions with only minor improvements made in J73
and Ada. The additions made by these languages
don't provide new capabilities, but rather, allow
the programmer to state the solution in a wmore
precise, reliable, and straightforward manner.
These characteristics are precisely those that
will aid maintenance efforts and reduce life cycle
costs.

6.1 FORTRAN

Although FORTRAN contains the basic
functional capabilities required by many problems,
FORTRAN programmers would encounter difficulties
in several areas: low-level 1/0, partial word
data, and tightly packed records.

Features 37 and 48 are those most pertinent
to low-level 1/0. As can be seen, FORTRAN
contains no provisions for explicitly specifying
low-level 1/0 instructions. These must be
implemented ‘as calls to assembly language
routines. Since 1/0 operations normally entajil
only a single machine instruction, subroutine
linkage overheads of 3 to 4 words represent
significant increases. A much greater problem
occurs on time critical 1/0 operations (e.g.,
disable interrupts) which can't allow any
intervening overhead instructions.

FORTRAN 1is unable to specify data jtems
requiring less than a full word or byte of memory,
as is indicated by features 47, 22 and 16. In
order to access specific bit strings within a
word, the programmer must use explicit masking and
shifting operations. In addition to being error
prone, this makes code less understandable because
descriptive names cannot be associated with
specific bits.

6.2 CMS-2

CMS-2 corrects most shortcomings found in
FORTRAN. Specified tables wmay contain items of
different types and may assign exact sizes and bit
positions to individual {tems. Using these
features, the CMS5-2 programmer can access each
field by an appropriate varjatle name. Low-level
1/0 in CMS-2 is accomplished by allowing insertion
of assembly language directly between (MS.2
statements. Although these features are not
controlled as well as the corresponding features
in Ada and J73, they allow many military software
systems to be well represented in CMS-2.

The major shortcomings in CMS-2 are its lack
of strong typing and the presence of outdated
features. This second characteristic was caused
by the decision to maintain downward compatibility
of compilers. It results §{n special cases and
duplicated features throughout CMS-2. The
150-plus keywords found in CMS-2 are indicative of
its complexity for both implementation and
maintenance programamers. Secondly, CMS-2 s
comparatively weak in data typing. Scoping 1is

543

leas powerful; some data types are either
misaing, a3 in the case of cnumcration types, or
are restricted, as in the case of bit strings;
and the user is not allowed to group data by
defining his own types. These features are
desirable to facilitate code reliability.

6.3 JOVIAL (J73)

Table 1 shows that J73 consistently outscores
CMs-2. The number and types of constructs found
in J73 have been greatly condensed without Jlosing
any of the functional capability found in CMS-2.
Beyond CMS-2, J73 has fncluded the basis for
strong typing, fundamental exception handling,
tighter control of functions and procedures, and
slight improvements in control structures. The
strong typing and exception handling capabdbilities
of J73 were adopted from early work on Ada and as
such are not nearly as well developed as those in
Ada. The four areas mentioned here account for
most of the 80 point difference between J73 and
CMS-2. The overall effect of these features is an
increase in reliability and wmaintainability as
indicated in features)1 and 2 of the General
Design Criteria section. (Table 1)

J73's major improvements in control
structures are loop EXITS and short circuiting of
conditional expressions. Loop EXITS provide a
controlled alternative to explicit GO TO's or
match flags for exiting iterative loops wupon the
occurrence of desired conditions. Snort
circuiting allows the use of logical properties to
optimize complex decisions. For example, the
decision

IF A=0 or B=0 or (Cz0 and D=1)
is known to be true as soon as A is founc to equal
zero, and the remaining conditions need not be
checked.

J73 introduces several improverents to
functions and procedures. Strong parameter type
checking is supported across separate cozp:lation,
as well as within compilation wunits. Machine
specific functions and procedures allow a well
controlled means of introducing low-level 1/0.
J73 compilers will recognize a special set of what
look like procedure or funct:on calls as
requesting inline generation of wmac!:ine specific
instructions. Recursive procedures are also
supported. These improvements to functions and
procedures allow compile-time error detection in
this area and result in more reliable code.

Another J73 improvement related to procedures
and functions is the abort capability covered in
feature 45. An alternate return may be specified
on procedure calls. Execution of the ABORT
statement within called procedures will
subsequently return control to the most recently
specified alternate return. This provides an
efficient means of handling error conditions
without destroying the single-entry-single-exit
benefits of structured programm:ng.

The most important reliability improvements
in J73 are obdtained from {ts strong typing
features. This is reflected by J73's 26 point

R

nereane over CMG-D in the bata Typing area of
vable 11, Fnumeration types are provaded to
annociate samall tista of value: with particular
variadblea, J73 alaso requires explicit conversion
between data of differing types and forces pointer
varjables to always refer to the same kind of
table. User defined types arc allowed to fdentify
items with similar characteristics. These
constructs encourage better system design due to
better data definition and partitioning. The
increased data definitions also allow the compiler
to more completely identify incorrect variable
usages.

6.4 Ada

Ada takes the benefits found in J73's strong
typing one step further. Strong data typing is
the fundamental characteristic of Ada. In
addition to user definable typea, Ada provides
sub-types to specify absolute value ranges which
are automatically checked across all assignments.
Moreover, most features in Ada contain nuances
which reflect the assumption of very strong data
typing. Overloading of procedures, encapsulation,
and generic program units are examples of new
concepts in Ada highly associated with strong
typing. The impact of strong typing in Ada is so
dominant as to force a new style of programming.
This new approach greatly enhances the production
of reliadle code. These capabilities are
indicated by Ada's high scores in the Design
Criteria and Data Typing areas of Tabdle I.

While providing this radical departure from
the other three languages, Ada consistently builds
upon their proven capabilities. Comparing the Ada

scores in Table 1 with those of the second place

language, J73, we find 35 features in which Ada
receives a higher score and only 5 in which it
scores lower. In these five features the Ada
score is lower by only a single point in each
case.

The second area of significant improvement in
Ada is the inclusion of real time processing
constructs. In this section of Table 11, Ada
receives almost a full score while the other
languages receive almost no points at all. The
Ada language contains the fundamentals of a real
time executive. Presently such executives are
implemented via several vroutines particular to
each operating system. In Ada, desired executive
control and synchronization of independant tasks
car, be obtained by proper selection of built-in
language constructs. Incorporation of these
features directly in the language not only reduces
implementation efforts but also establishes a
consistent approach across systems.

Ada's score of 373 out of a possible 394
points clearly marks it as the most desirable
language choice. There are a few reservations,
however, concerning Ada due to its early stage of
development. Ada has just been defined as of
March, 1979, and is still undergoing refinement.
No Ada compller has yet been implemented. As we
have discussed above, Ada imposes a new style of
HOL programming. It includes many new features

544

unfamiliar to a Jarge Seyment of programmers.
While providing, many benefits, theae features will
require a learning proceas. They also prearnt new
implementation protlems to compller deaigners,
Certainly, additional complexity should be avoided
in any changes made during the Ada teat and
evaluation proceas and the importance of initial
compiler implementation efforts should not be
underestimated.

ADA FOR J73 CMC MAX
Design Criteria 4 3% W 32 56
General Syntax 35 28 33 28 38
Data Typing m 47 92 66 112
Control 50 33 48 36 5
Functions & 1/0 43 19 30 20 4
Real Time Processipg 28 4] [1 30
Other Techniques 57 15 42 27 63
Totals 373 177 290 210 394

Table 11. Summary of Results

References

1. Sammet, Jean E. Programming Languages:
History and Fundamentals. Prentice Hall, 196G.

2. Katzan, Harry Jr. Fortran 77. Van
Nostrand Reinhold, 1978.

3. PDP-11 FORTRAN Language Reference Manual.
Digital Equipment Corporation. Copyright 1975.

4, MIL-STD-1589A Military Standard Jovial
(J73). USAF. March, 1979.

S. N-1155 A Brief History of (MS-2
Development. Fleet Combat Direction Systems
Support Activity. September, 1977.

6. M-5045 (CM5-2Y Programmers Reference
Manual for the AN/UYK-20 Computer. Fleet Combat
Direction Systems Support Activity. Septenber,
1977.

7. Red Language Reference Manual.
Intermetrics. March, 1979.
8. Green Language Reference Manual.

Honeywell Bull. March, 1979.

9. Steelman Requirements for High Order
Computer Programming Languages. Department of
Defensc. Junc 1978,

TR e O T TS

An Introduction to Ada

I Course Outline

FIRST DAY

Overview of Ada
History of Ada, comparison to present military standard

languages, introduction to Ada Features

Example I - Introductory Example
Program structure, lexical wunits, declarations, basic

statements

Example II -~ Procedures and Functions
Declaration and parameter modes, blocks, visibility, type

declarations, statements, type equivalence, operators and
operands

SECOND DAY

Example III - Record Handling
Records and record aggregates, packages, case statement,
input-output, program structure, visibility, separate

compilation

Example IV - Enumeration Types
Enumeration Types, Array
association

aggregates, named parameter

Case Study I ~ Program Design Using Packages

THIRD DAY

Example V - Overloading and Exceptions
Overloading, exceptions, exceptions in packa3jes

Example VI - List Processing
Access types, data abstraction, generics, discriminants,

variant records

Case Study II - Real Time Control - Overview

FOURTH DAY

' Example VII - Fundamentals of Tasking
- Task concepts

Example VII1 - Task Interactions)
Entries, accept statements, rendezvous, task attributes,

f } select statements

Case Study I1 - Real Time Control - Implementation

Summary

SYNTAX

DECLARATIONS and TYPES

STATEMENTS

SUBPROGRAMS

PACKAGES

ADA INTRODUCTION

designed for readability

factorization of properties, maintainability
abstraction, hiding of implementation details
reliability, due to checking

floating point and fixed point, portability
access types, utility and security

assignment, iteration, selection, transfer
uniformity of syntax (comb structure)
generally as simple as possible

{e.g., iteration control)

procedures and functions

logically described parameter modes
(as opposed to definition by
implementation description)

overloading

modularity and abstraction
structuring for complex programs
hiding of implemen:ation, maintainability
major uses:
. named collections of declarations
. groups of related subprograms
. encapsulated data types

itin it

LIBRARIES

- Separate compilation

- generics

= program development environment
TASKING

can be done completely with Ada features

single concept for intertask communication
and synchronization

interface with external devices

designed for efficient implementation

EXCEPTION HANDLING
- for reliability of real-time systems
~ standard vs. user-defined exceptions
- meant mainly for handling errors
(rather than as a general programming
technique)

MACHINE DEPENDENCIES
- representation specifications
- interface with other languages
- low level 1/0

'&-—“

Ada IS DESIGNED FOR

WRITING LARGE PROGRAMS

Ada HAS FEATURES TO ALLOW
SUITABLE EXTENSIONS FOR

A PARTICULAR APPLICATION

Ada IS A DESIGN LANGUAGE

T W Ry A

EXAMPLE I

INTRODUCTORY EXAMPLE

1.100

Py oy

[—
3)

OBJECTIVES

Program Structure
Lexical Units
Declarations

Basic Statements

I.110

w;.ﬂ-““"“ -

B G

LOGICAL ESTRUCTURE

R R 9-;;11

3 with TEXT_IO;

procedure MIN_MAX SUM ig

declarative
part

begin

sequence of
statements

PR —

f end MIN_MAX_SUM;

I.120

[—
v

TEXTUAL STRUCTURE

with TEXT_10;

procedure MIN MAX SUM is

for o o o loop

if e o then

elsif . . . then

end loop:;

end MIN_MAX_SUM;

A COMPLETE PROGRAM

with TEXT_IO;
procedure MIN_MAX SUM is

-- This program reads a list of one or more intégers and
P -- reports the minimum, maximum, and sum of them. The

: -- program expects this list to be preceded by an integer
-~ value giving the number of integers in the list.

use TEXT_I0;

ITEM : INTEGER;
MAXIMUM : INTEGER;]
MINIMUM : INTEGER;
SUM ¢ INTEGER;
NUMBER_OF_ITEMS : INTEGER range 1..INTEGER'LAST;
begin
GET(NUMBER_OF_ITEMS); -- Read the length of the list

-- Assume NUMBER_OF_ITEMS >= 1

GET (ITEM);
MAXIMUM := ITEM;
MINIMUM := ITEM;
SUM := ITEM;

for N in 2..NUMBER_OF_ITEMS loop -~ Loop variable is
declared automatically
-~ Its scope is range of
loop statement

GET (ITEM);

if ITEM > MAXIMUM then
MAXIMUM := ITEM;

elsif ITEM < MINIMUM then
MINIMUM := ITEM;

end if;

SUM := SUM + ITEM;
end loop;
PUT ("™ MAXIMUM IS "); PUT(MAXIMUM); NEW_LINE;
PUT(" MINIMUM IS "); PUT(MINIMUM) ; NEW_LINE;
PUT("™ SUM IS "); PUT(SUM) ; NEW_LINE;

end MIN_MAX_SUM;

i: 1.140

LEXICAL UNITS

VIDENTIFIERS
RESERVED WORDS
NUMBERS
STRINGS

DELIMITERS

any number of spaces between lexical units
at least one space between adjacent identifiers

or numbers

oy ‘

[

*

{
§ IDENTIFIERS §
' i
: |1
i |

MIN_MAX_SUM -- underscore is significant
: .
| MINMAXSUM -- not the same as MIN_MAX_SUM E
: X
’ ITEM l
| . f
; NUMBER_OF_ITEMS -- no distinction made
E Number_ Of_ Items -- between upper and
-- lower case
Size_30 -- identifier may include digits

-- Composed of letters, digits, and

- isolated underscores

-- First character must be a letter

-- Last character must be a letter

- or a digit

-~ All characters are significant;
- length of identifier restricted

- only by length of line

LY

RESERVED WORDS

procedure is

begin

end

if then else elsif
for in loop

(not a complete list)

Relatively small set of reserved words which must be
memorized.

Predefined identifiers (attributes) may be used as regular
identifiers.

PREDEFINED TYPES

INTEGER

FLOAT U

BOOLEAN

CHARACTER

Part of pre-defined environment
Not reserved words

PREDEFINED ATTRIBUTES

-~ declaration from example

NUMBER_OF _ITEMS :INTEGER range 1l..INTEGER'LAST

INTEGER is a predefined type

LAST is a predefined attribute which returns the maximum

value of any scalar type

T'FIRST returns the minimum value of the type

T*LAST returns the maximum value of the type T

T

1.180

NUMBERS

Integer literals
2500
2 500 -

25_00
25E2

241001 1100 _0100%
24100_T11_000_1004

B#4704%
1639C44
Different representations of same value

Based integers can be represented with
any base from 2 to 16

Real literals

12.75
1275.0E-2
0.1275e2

2%1100.11¢#
23110011.0%e-2
2#0.1100114%E4

8414.6%
83#146.0%el

Different representations of same value

PGNP

E‘
¥
;
L.

MAXIMUM IS

./I

“HE SAID *""NO""."

"THIS IS "&
"A STRING"

STRINGS

a string is an array of characters
a string of length one

included string bracket must be
written twice

concatenation used to represent

strings which are longer than
one line

a one-character string representing
the double quote

represents an empty string

1.200

:l/"[
I DELIMITERS
L.
f i Special characters
+ - / *
3
. Py [])
? . ’ .
< = >
()
I & $ _ L
Compound symbols
= replacement ‘

range definition

*k exponentiation operation
>= <= /= relational operat&rs
<< >> identifies labels which

are objects of GOTO's

=> indicates relationship
between a name and
a value, action, or]
declaration !

<O stands for unspecified range

v el ekl

COMMENTS

-- This program reads a list of integers

-- A comment starts with a double hyphen
-- and is terminated by the end of the line

begin -- Body of sort

--------------------- the first two hyphens
--------------------- start the comment

1.220

OBJECT DECLARATIONS

| ITEM INTEGER;

identifier_list : type_mark;

identifier_list : type mark constraint;

NUMBER_OF_ITEMS : INTEGER range 1l..INTEGER'LAST;

Initialization -

identifier_list : type_mark := expression;

COL_NUM, ROW_NUM : INTEGER := 0;

READY, BUSY, RUN : BOOLEAN := FALSE;

RANGE CONSTRAINT

NUMBER_OF_ITEMS : INTEGER
range 1..INTEGER'LAST;

Form:

simple_expression .. simple_expression

L .. R describes values from L to R inclusive
L>R indicates empty range

type of range constraint is type of expression

NN . S

e A P e bR N Vo b b

1

STATEMENTS

ASSIGNMENT

IF

LooP

SUBPROGRAM CALL

I1.250

e S AT I G Y e

TR e e § I I

ASSIGNMENT STATEMENT .

variable := expression;
A A
] |
| |
| |

___Same type

MAXIMUM := ITEM;

SUM := SUM + ITEM;

~- compile time checking

-- No automatic conversion

~-- across replacement operator

P

IF STATEMENT

if condition then
sequence_of statements

end if;

Example

if MONTH = 12 and DAY = 31 then
MONTH := 1;
DAY := 1;
YEAR := YEAR + 1;

end if;

if condition then 5

sequence_of statements

zZero or

elsif condition then
- more times

sequence_of_ statements

)
|
|
|

else
optional

sequence_of_ statements

— ——— —

1.280

—

!

7

= DAYS_IN_MONTH then

if MONTH = 12 then

MONTH := 1;

YEAR := YEAR + 1;

MONTH := MONTH + 1;

end if; '

:= DAY + 1;

DISCRIMINANT := B * B - 4,0 * A * C;

if DISCRIMINANT < 0.0 then
PUT (™ NO REAL ROOTS ");

elsif ABS(DISCRIMINANT) < 1.0e-8 then
PUT (" EQUAL REAL ROOTS ");
ROOTS := =-B/2.0 * A;
PUT (ROOTS) ;

else
PUT (™ DISTINCT REAL ROOTS ");

end if;

1.300

- r L]
e R AR L oM.« b, it i S . o 35

end

LOOP STATEMENT

loop_parameter discrete_range
| I
! |
| I
I I
v v Tt
for N in 2, .NUMBER loop

sequence_of_ statements

loop;

The loop parameter is implicitly declared as a 1local
identifier; it (logically) exists only during the execu-

tion of the loop statement.

The 1loop parameter acts as a constant; it cannot be

altered by thec sequence_of statements.
The loop parameter has no value outside the loop.

The discrete_range is evaluated only once, before the

execution of the loop statement.

On successive iterations, the loop parameter is succes-
sively assigned values in ircreasing order from the
specified range when in is |used. If reserved word
reverse is wused, values are assigned 1in decreasing

order.

I.310

|
j
!
1

, T OTHER LOOP EXAMPLES

[

for N in reverse 1..80 1loop

| for N in

sequence_of_ statments

end loop;

while condition 1loop

sequence_of statments

end loop;

BAm e —

il e i i 1 £ o : omiaccoatens: SAG Al
il i _Aae n - Al otamad mlodfa o aman .

LOOP STATEMENT

Tt gy ¥

Composed of

Ommivnay

iteration_specification (optional)

basic_loop

| iteration_specification -

while condition

for 1loop_parameter in discrete_range

for loop_parameter in reverse discrete_range

basic loop ~

loop

sequence_of statements

end loop;

LABELED LOOPS

SEARCH:
loop

-
L]

end loop SEARCH;

SUMMATION:
for I in 1..N loop

-

end ‘oop SUMMATION;

Compiler will check labels for proper

nesting.

1.340

*ﬂ==EEHlH!.lllIlIlIIlllIIIIIlIllI-l---------—’—‘

SUMMARY

Pt Gy

i e

Program Structure
Lexical Units
Declarations

Basic Statements

i
{

IT 1.350

3
i
i
H
s

EXAMPLE 1II

PROCEDURES AND FUNCTIONS

i

OBJECTIVES

Procecedures and functions
declaration
parameter mode
Blocks
Visibility
Type declarations
Statements

Type equivalence

Operators and operands

I11.110

P v e g X

type FLOAT_ARRAY is array (INTEGER range <>) of FLOAT;

function AVERAGE (V : in FLOAT_ARRAY) return FLOAT is

SUM : FLOAT := 0.0;
begin

for I in V'FIRST..V'LAST loop
SUM := SUM + V(I);

end loop;
return SUM / FLOAT(V'LENGTH);

end AVERAGE;

I11.120

o

e

with MATH_LIB;

procedure STATISTICS (V : in FLOAT_ARRAY ;

AVG, STD_DEV : out FLOAT) is
SUM : FLOAT := 0.0;

begin

AVG := AVERAGE(V);

for I in V'FIRST..V'LAST loop
SUM := SUM + (AVG - V(I))**2;

end loop;
STD_DEV L MATﬂ_LIB.SQRT(SUM / FLOAT(V'LENGTH));

end STATISTICS;

I1.130

TYPES and DECLARATIONS

A type characterizes a set of values and a set of operations

applicable to those values.

1 Type declaration

specification of some attributes

association of a name with the attributes

Data object declaration ‘

associates type (attributes) with a name

creates an object of that type

associates the object with the name

Subprogram declaration

associates a block of code with a name

specifies parameters
L. names, modes, types and order ﬂ

specify return type (functions)

11.140

type

ARRAY TYPE DEFINITION

name of
user-defined
type
|

|
|
A

of

1 |
| FLOAT_ARRAY |
| |

T
is array (| INTEGER range <>

| FLOAT |
I |

A
!
|

|
type of
each
component

it SNt D

type
of
index

<———

==

ntadbbesimeniciing

SUBPROGRAMS
Procedures and Functions
E
1 |
{ subprogram_specification 1 is
| !
| |
| declarative_part I
I I
begin
; | I
| | sequence of statements |
: I - T |
H
end ;

¢

| SESE

I1.160

(Vv :

return

in

FUNCTIONS

Subprogram specification -

function AVERAGE

FLOAT_ARRAY)

FLOAT

function AVERAGE (V : in FLOAT_ARRAY) return FLOAT

nature and name

of subprogram

-~ parameter list

(optional)

type of object to

be returned

11.170

for "in"

PARAMETER MODES

(V : in FLOAT_ARRAY)

parameters -

the parameter acts as

a local constant whose
value is provided by

the corresponding actual

parameter

: FLOAT_ARRAY) is equivalent to (V

T e e AT

in FLOAT_ARRAY)

S
F—.w..¢~.- e e e o

H [, o enantimioy

ARRAY ATTRIBUTES

function AVERAGE (V : FLOAT_ARRAY) return FLOAT is~

SUM : FLOAT := 0.0;

begin
for I in V'FIRST..V'LAST loop

SUM := SUM + V(I1);
end loop;

return SUM / FLOAT(V'LENGTH) ;

end AVERAGE;

FIRST, LAST, and LENGTH are predefined attributes

For the array object V,

V'FIRST lower bound of index of V

V'LAST upper bound of index of V

V'LENGTH number of components of V
11.190

PROCEDURES

Subprogram specification -

procedure STATISTICS

(V : in FLOAT_ARRAY;

AVG, STD_DEV : out FLOAT) ;

for "out" parameters -

the parameter acts as

a local variable whose
value is assigned to the
corresponding actual
parameter at the time

of normal exit

11.200

I L3

with TEXT_IO, MATH_LIB;

procedure ANALYSIS is
use TEXT_IO;
type FLOAT_ARRAY is array (INTEGER range <>)

of FLOAT;

SIZE

(13

NATURAL;

function AVERAGE (...) is

end AVERAGE;
procedure STATISTICS (...) is

end STATISTICS;

begin
GET(SIZE);

declare

RATE : FLOAT ARRAY(1l..SIZE);

AVERAGE_RATE,
STD_DEV_RATE : FLOAT;

begin

for I in 1..RATE'LAST loop
GET (RATE(I));

end loop;
STATISTICS (RATE, AVERAGE_RATE, STD_DEV_RATE);

-- use of AVERAGE_RATE and STD_DEV_RATE
-- in this code

end;

-- Variables in block no longer visible

end ANALYSIS;

I1.210

T e N, O T R

1’ BLOCK

declare)
1 1
| declarative_part |
I |

begin
T 1
| sequence_of_ statements |
I !

end;

Execution of block results in ‘

elaboration of its declarative part

followed by

execution of the sequence of statements

[11.220

TEXTUAL STRUCTURE

function F is

begin

end F;

procedure P is

begin

end P;

declare

begin

end;

SUBTYPES

SIZE : NATURAL; -

NATURAL is a predefined identifier

subtype NATURAL is INTEGER

range 1..INTEGER'LAST;

b where LAST is a predefined attribute

If T represents a scalar type,
T'LAST returns the maximum value in the range of T.

T'FIRST returns the minimum value in the range of T.

I11.240

procedure SORT (V : in out FLOAT_ARRAY) is

LAST INTEGER := V'LAST - 1;

CHANGED : BOOLEAN;

procedure SWAP (INDEX : in INTEGER) is
TEMP : FLOAT := V(INDEX);

begin -- SWAP
V(INDEX) := V(INDEX + 1);

V(INDEX + 1) := TEMP;

end SWAP;
begin -- SORT
loop

CHANGED := FALSE;
for I in V'FIRST..LAST loop
if V(I+l) < V(I) then
SWAP(I);
CHANGED := TRUE;
end {f;
end loop;
exit when LAST <= V'FIRST or not CHANGED ;
LAST := LAST - 1;
end loop;

end SORT;

11.250

-
[
{!

|

-

W—nnt kL

procedure SORT (V : in out FLOAT_ARRAY)

for "in out" parameters -

parameter acts as a
local variable and
permits access and
assignment to the
corresponding éétual

parameter.

11.260

NESTED PROCEDURES

§ procedure SORT . . . |is

| I
| I
. | | declarative
i ' | part
' | I
| |
I |
| | begin ~- body of SORT
: 1) |
’ | sequence_of_statements | executable
] part
I end SORT ;
i 1
L
]
i
* : 11.270

P

procedure SORT .

NESTED PROCEDURES

| |
| LAST : INTEGER := V'LAST - 1; |
| | declarative
| CHANGED : BOOLEAN; | part
| I
| I
I I
begin -- body of SORT
I]
| sequence_of_statements | executable
I I part

end SORT ;

NESTED PROCEDURES

[S
. T
e et v

procedure SORT . . . |is

H

T !
| LAST + INTEGER := V'LAST - 1; |
| | declarative]
) CHANGED : BOOLEAN; | part %
| | ¢
| procedure SWAP ... is | r
| . | ;
| . |
| . |
| end SWAP; |
| |

begin -- body of SORT
| |
| sequence_of_scatements | executable
| | part

end SORT ;

11.290

procedure SORT (V : in out FLOAT_ARRAY) is

LAST : INTEGER := V'LAST - 1;

I CHANGED : BOOLEAN;

L procedure SWAP (INDEX : in INTEGER) is

| TEMP : FLOAT := V(INDEX); :

begin

V(INDEX) := V(INDEX + 1);
V(INDEX + 1) := TEMP;

end SWAP;

begin -- body of SORT

end SORT;

i VISIBILITY

procedure OUTER is

A
B

I

BOOLEAN;
BOOLEAN;

procedure INNER is

B : BOOLEAN; -~ Redeclaration hides
-~ outer B

C : BOOLEAN;

begin

AUl 5k b A A s

-= Quter A, inner B and C
-- are directly visible

-- Outer B can be made visible
-- by a selected component,
that is, OUTER.B

|
|

end INNER;
begin

-~ Outer A and B are directly visible
-- Inner B and C are not visible

end OUTER;

I1.310

FE

NESTING OF STATEMENTS

begin -- body of SORT
loop
assignment;
for e loop

if o then
assignment;
assignment;

end if;
end loop;

exit when ... ;

assignment;

end loop;

end SORT;

0 BN S PO SR

LOOP & EXIT STATEMENTS

loop

» -* []
exit when condition;

end loop;

exit statement causes explicit

termination of enclosing loops

unless o o

I1.330

REPLACE:
loop

SEARCH:

loop

exit REPLACE when C_ONE ;

exit when C_TWO;

end loop SEARCH;

end loop REPLACE;

TR T G e o e P APERIOY1 3 e £ e =

TYPE EQUIVALENCE

type ELEMENT is range 0..K;

: array (l..N) of 0..K;

array (l1..N) of 0..K;

A
B
(o] array (l1..N) of ELEMENT;
D

array (l..N) of ELEMENT;

A, B, C, and D are each considered to be of different and
distinct types even though the types are textually
identical. Thus, the assignment statements

A
B

'I; "
o Ow

e W

are not allowed.
The assignment
C(I) := D(I);

is acceptable since the variable and the expression are of
the same type (ELEMENT), whereas

C(I) =:= B(I)

is not allowed.

II.350

O . L gl e

! A,B : array (l..N) of 0..K;

A and B are objects of the same type

type VECTOR is array (1..N) of 0..K;
C : VECTOR;
D : VECTOR;

C and D are objects of the same type

and C := D are
is not valid.

Whereas A
valid, A

B
C

T I1.360

=
W

Different from constraints

: INTEGER range 1..10;

s INTEGER range 1..20;

and K are all of the same

(i.e., INTEGER)

J; -- identical ranges

J; -- compatible ranges

K; -- can only be checked
-- during execution

15;

K; -- raise the

-- RANGE_ERROR exception

I1.370

Scalar types

Composite types

Access types

TYPES
values have no components; includes
enumeration, integer, and real types

integer and real called numeric types

values consist of several component
types; includes arrays and records

value provides access to other objects

Scalar

Real

|
Discrete
|
|

FLOAT

1 I h
fixed point INTEGER Enumeration
(includes
CHARACTER
and
BOOLEAN)

11.380

LOGICAL OPERATORS

Operator Operand type Result type

and or xor not BOOLEAN BOOLEAN
one dimensional same array type
array of BOOLEAN
components

Example:

type BIT_VECTOR is array | 1..32) of BOOLEAN ;

A, B : BIT_VECTOR;

valid expressions:
A and B
A(l..8) or B(l..8)
A(2..5) xor B(29..32)

11.390

RELATIONAL OPERATORS

Operator Operand Type
= = any type
< <= > >= one dimensional array

with components of a
discrete type

Example:

S, T : array (l..N) of INTEGER;

EQUAL := TRUE;
for I in 1..N loop

if S(I) = T(I) then
EQUAL := FALSE;
exit;
end if;
end loop;

can be written as

EQUAL := S = T;

Can be extended to multidimensional arrays

Result Type

BOOLEAN

BOOLEAN
BOOLEAN

I11.400

ARITHMETIC OPERATORS

Operator Operand Type Result Type
+ - integer same integer type
real same real type
* integer same integer type
. floating same floating point type
mod rem integer same integer type
Operator Left Operand Right Operand Result
Type Type Type
*k integer positive integer integer
floating integer floating

TYPE CONVERSIONS

Explicit type conversions allowed between closely related types.

Numeric type conversions:

REAL(integer expression) -- value is converted
-- to floating point

INTEGER (
(

6) = 2 -- conversion of real to integer
INTEGER 4) =0

1.
-0. -- involves rounding

11.410

PRECEDENCE
(lowest) logical and or xor
relational = = <= < > >=
adding + - &
unary + - not
multiplying * mod rem
(Highest) exponentiating *#*

All operands are evaluated (in an undefined order)
before evaluation of the corresponding operator.

Therefore, the expression
A and B or C
requires parentheses; that is
(A and B) or ¢
or

A and (B or ()

The expressions

A and B and C
and

A or B or C

do not require parentheses.

Short circuit control forms (and then and or else) have same
precedence as logical operators.

Membership tests (in and not in) have same precedence as
relational operators.

11.420

‘.iﬁ.ﬁiuuﬁuﬂuﬁﬂnn-huuh&m& i i s i st aat i N) L
R g ve— ki axsit_ dvom

tames BN

FLOATING POINT TYPE

User defined floating point type:
type identifier is floating_point_constraint;
where floating_point_constraint is

digits P or
digits P range L .. R

where D is the required number of digits.

Floating_point_constraint specifies a minumum requirement.

EXAMPLES:

type COEFFICIENTS is digits 10 range -1.0 .. 1.0;

REAL is digits 8;

;

package STANDARD is

SHORT INTEGER is range implementation defined;
LONG_TNTEGER iS range implementation_ defined;

type INTEGER is range implementation_defined;
t
type

type FLOAT is digits implementation_defined
range implementation defined;

type SHORT_FLOAT is digits implementation_defined
ran e implementaE?on defined;

type NG_FLOAT is digits implementation_defined
range implementation defined;

11.430

o aangid e Dol 5 i aai

1 ' FIXED POINT TYPES

l H EXAMPLE: 3
% type F is delta 0.01 range -100.0 .. 100.0;
3 where "delta" of fixed point type specifies the absolute

§ value of the error bound.

If representation uses power of two, 14 bits are required
for the magnitude, i.e.,

i 64 32 16 8 4 21 1/2 1/4 1/8 1/16 1/32 1/64 1/128
/\
binary point

The error is 1/128 = 0.000_000_1 (base 2) = 0.0078125 < 0.01

1I1.440

i

kg

i

SUMMARY

Procedures and functions
declarations
parameter mode
Blocks
Visibility
Type declarations
Statements

Type equivalence

Operators and operands

I11.450

EXAMPLE III

RECORD HANDLING

III.100

}' OBJECTIVES
f Packages
B
i Records and record aggregates

Case statement
Input - Output
Program Structure
Visibility

Separate Compilation

[I 111,11

Example III

e

procedure PROCESS_RECORDS is

package RECORD HANDLER is
--specifications
end RECORD_HANDLER;

use RECORD_HANDLER;
ITEM : ITEM _RECORD; -- defined in RECORD_HANDLER
NO_MORE_RECORDS : BOOLEAN := FALSE;

package body RECORD HANDLER is "
-- implementation :
end RECORD_HANDLER;

begin
OPEN FILES;
loop
GET_VALID RECORD (ITEM, NO_MORE RECORDS);
exit when NO MORE RECORDS;
WRITE_RECORD (ITEM);
end loop; '
CLOSE_FILES;
end PROCESS_RECORDS;

T

-- This specification appears inside of PROCESS_RECORDS, as is
-- indicated above.

package RECORD_HANDLER is
type ITEM_RECORD is

record
ITEM_CODE : record
PREFIX : STRING(l..2);
NUMBER : range 0..9_999;
SUFFIX : CHARACTER;

end record;
DESCRIPTION : STRING(1l..30);
SOURCE : range 0..999_999;
end record;
procedure OPEN_FILES;
procedure CLOSE FILES;
procedure GET_VXLID_RBCORD (REC : out ITEM_RECORD;
END_OF_DATA : out BOOLEAN); ‘
procedure WRITE_RECORD (REC : in ITEM_RECORD); '
end RECORD_HANDLER;

111.120

: -- This implementation of RECORD_HANDLER is similarly meant to
‘- -- appear within PROCESS_ RECORD.™

with (TEXT 10);
package body RECORD_HANDLER is
use TEXT_I0; |
subtype RECORD STRING is STRING (1..43); i
package RECORD_IO is new INPUT_OUTPUT (ITEM_RECORD); i
IMMEDIATE, DEFERRED : RECORD_IO_.OUT_FILE

procedure OPEN_FILES is |
use RECORD_ 10; A
begin
CREATE (IMMEDIATE, "external file name");
CREATE (DEFERRED, "external file name");
end OPEN_FILES;

procedure CLOSE_FILES is
use RECORD_ 10;

begin
CLOSE (IMMEDIATE);
CLOSE (DEFERRED);

end CLOSE_FILES;

procedure GET_NEXT RECORD (REC : out RECORD_STRING;
VALID_LENGTH,
END_OF _DATA : out BOOLEAN) is
I : NATURAL; - -
begin
if CHARACTER_IO.END OF_FILE then
END_OF_DATA := TRUE;

else
END_OF_DATA := FALSE;
I := 0;
while not END OF LINE and I < 43 loop
I :=1+ 17 ~
GET (REC(I));
end loop;

VALID LENGTH := I = 43 and END_OF_LINE;

if not END OF LINE then
SKIP LINE;
-- advances input to beginning
-- of next line
end if;
end if; b

end GET_NEXT_RECORD;

¢ I111.130

function VALID_RECORD (REC : in RBCORD_STRING)
return BOOLEAN is

s r————

function LETTERS (S : STRING) return BOOLEAN is
begin
for C in S'FIRST..S'LAST loop
if S(C) not in 'A’',..'2Z' and S(C) not in ‘ta‘'..'2z’
then return FALSE; ’
end if;
end loop;
return TRUE;
end LETTERS;

function NUMERALS (S : STRING) return BOOLEAN is
begin
for C in S'FIRST..S'LAST loop
if S(C) not in '0'..'9' then
return FALSE;
end if;
end loop;
return TRUE;
end NUMERALS;

begin -- body of VALID_ RECORD
if LETTERS (REC(1..2)) and then NUMERALS (REC(3..6))
and then (REC(7) = °'N' or REC(7) = ‘L' or REC(7) = 'X')
and then NUMERALS (REC(38..43)) then
return TRUE
else
return FALSE
end if;
end VALID RECORD;

procedure WRITE_RECORD (REC : in ITEM_RECORD) is
use RECORD_IO;

begin ,
case REC.ITEM CODE.SUFFIX of
when 'N' =5 WRITE (IMMEDIATE, REC);
when 'X' | 'L*' => WRITE (DEFERRED, REC);

others => null;
end case;
end WRITE_RECORD;

procedure WRITE_ERROR (REC : in RECORD STRING) is
begin -
PUT("INVALID DATA: " & REC);
NEW_LINE; H
end WRITE_ERROR;

| ' II1.140

PR

.

function CONVERT (R : RECORD_STRING) return ITEM_RECORD is

function STRING TO_INT (S : STRING) return INTEGER is
VALUE : INTEGER := 0;
i, begin
for I in S'FIRST..S'LAST loop
VALUE := 10 * VALUE + CHARACTER'POS(S(I)) -
CHARACTER'POS ('0');

end loop;
return VALUE;
end STRING_TO_INT;

begin =-- body of CONVERT
return (ITEM CODE => (R(1l..2),
STRING TO INT (R(3..6)),
R(7)),
DESCRIPTION => R(8..37),

SOURCE => STRING_TO_INT (R(38..43)));
end CONVERT;

procedure GET_VALID RECORD (REC : out ITEM RECORD);

END_OF_DATA : out BOOLEAN) is
S : RECORD_STRING;

LENGTH_ ERROR : BOOLEAN;
begin
loop
GET_NEXT_RECORD (S , LENGTH_ERROR, END_OF_DATA) ;
if END OF _DATA then
return,
elsif LENGTH ERROR or else not VALID RECORD(S) then
WRITE ERROR(S),
else
REC := CONVERT(S);
return;
end if;
end loop;
end GET_VALID RECORD;

end RECORD_HANDLER;

II1.150

INPUT VALIDATION
1 . and

FILE SELECTION

it

| |
; | FILE OF |
; | RECORDS |
. | (INPUT) |
! | |
& Il
b X
| \/
|~ KECORD |
| HANDLER |
| |
/ I\
/ Il \
/ i \
/ I \
/ I \ '
/ I \
/ \
| l___/ I | __I I
file:		file:		file:
OUTPUT		IMMEDIATE] DEFERRED	
Invalid				
records				
{	!			
INPUT: string (array of characters)
OUTPUT: string 1

IMMEDIATE: file of records

DEFERRED: file of records

e o e s i

iA ‘ III.160

bs At v

POSITION
1-7

8-37
38-43

INPUT RECORD FORMAT

(valid records)

NAME
ITEMCODE

~ PREFIX

~ NUMBER

- SUFFIX
DESCRIPTION
SOURCE

CONTENT

2 ALPHABETIC
CHARACTERS

4 NUMERALS

N, L, or X

30 CHARACTERS

6 NUMERALS

111.170

, ' 1 4 Py

Input:
subtype RECORD_STRING is STRING (1..43);
REC : RECORD_STRING;

valid Input Output files IMMEDIATE

and DEFERRED

REC (1..7) ITEMCODE
REC (1..2) PREFIX
REC (3..6) CONVERT NUMBER
REC (7) = ======—=--= > SUFFIX

REC (8..37) DESCRIPTION

REC (38..43) SOURCE

111,180

PR e e o

TR g S g T .~ 33

fprmung

ARRAY OBJECT - .

M

,! i- a set of components in which each

component is of the same type

array component is designated

by one or more index values

RECORD OBJECT -

a set of components in which
the components may be of

different types

a record object has named components

Y

L 111.190

e ey ey Y

» ooy

et g ety

RECORD STRUCTURE

ITEM_CODE DESCRIPTION

1
|
|
!
|
I
|

|

PREFIX | NUMBER SUFFIX
|
|

SOURCE

type ITEM RECORD is
record
ITEM CODE : record
- PREFIX : STRING(l..2);
NUMBER : range 0..9_999;
SUFFIX : CHARACTER;
end record;
DESCRIPTION : STRING (l1..30);
SOURCE : range 0..999 999;
end record; -

I111.200

o BN o]

[
v .

ks e~

Object declaration :

REC : ITEM_RECORD;

Reference to the components:

REC.SOURCE := 475124;
REC.ITEM_CODE.PREFIX := "PS";

case REC.ITEM_CODE.SUFFIX is

com——— 4

111.210

ey gyt

- T

PROGRAM DESIGN

initialize

loop
get valid record
exit when no more records
write to selected file

end loop

clean up

I11.220

|
|
|
|
|
|
|
{
|
|
|
1
|
|
|

---OPEN FILES

GET -

-VALID-=m—=====

RECORD

---WRITE RECORD

---CLOSE FILES

—— — — —— i —

PROGRAM STRUCTURE

-~-GET NEXT RECORD

~--LETTERS
——-VALID RECORD---=-- |
—--NUMERALS
---WRITE ERROR
—==CONVERT==~=~-~ STRING TO INT

]

111.230 :

A

%
Ajan==z=l=:lﬁ=!-uu-l--411
= —— "~

PACKAGE SPECIFICATION

L B)

+

package RECORD_HANDLER is

. -

type ITEM_RECORD is

record

ITEM_CODE : record

PREFIX STRING(1..2);

NUMBER : range 0..9_999;

SUFFIX : CHARACTER;

| end record;
DESCRIPTION : STRING(l..30);
SOURCE : range 0..999_999;
end record;
procedure OPEN_FILES;
procedure CLOSE_FILES;
procedure GET_VALID RECORD (REC : out ITEM_RECORD;

END_OF_DATA : out BOOLEAN);

procedure WRITE_RECORD (REC : in ITEM_RECORD);

end RECORD_HANDLER;

l_ I11.240

PROCESS_RECORDS

procedure PROCESS_RECORDS is

package RECORD_HANDLER is

--gpecifications

f; end RECORD_HANDLER;

use RECORD_HANDLER;

ITEM : ITEM_RECORD; -- defined in RECORD_HANDLER

NO_MORE_RECORDS : BOOLEAN := FALSE;

package body RECORD_HANDLER is
-- implementation

end RECORD_HANDLER;

begin

OPEN_FILES;

loop
i GET_VALID RECORD (ITEM, NO_MORE-RECORDS);
! exit when NO_MORE_RECORDS;
WRITE_RECQRD (ITEM);
end loop;
CLOSE_FILES;

end PROCESS_RECORDS;

]' 111.250

w' — i o ° . e et -+ b g

5 Outline of RECORD_HANDLER

with TEXT_IO;

package body RECORD HANDLER is

use TEXT_IO;
subtype RECORD_STRING is STRING (l..43);

package RECORD_IO is new INPUT OUTPUT
(ITEM"RECORD) ;

IMMEDIATE, DEFERRED : RECORD_IB.OUT_FILE;

procedure OPEN_FILES is

end OPEN_FILES;

procedure CLOSE_FILES is

end CLOSE_FILES;

procedure GET_NEXT_RECORD (REC : out RECORD_STRING;
VALID_LENGTH,
END_OF_DATA : out BOOLEAN) is

end GET_NEXT_RECORD;

tunction VALID_RECORD (REC : in RECORD_STRING)
return BOOLEAN is

function LETTERS (S : STRING) return BOOLEAN is

end LETTERS;

function NUMERALS (S : STRING) return BOOLEAN is

end NUMERALS;

end VALID_RECORD;

procedure WRITE_RECORD (REC : in ITEM_RECORD) is

end WRITE_RECORD;

procedure WRITE_ERROR (REC : in RECORD_STRING) is

end WRITE_ERROR;

function CONVERT (R : RECORD_STRING) return ITEM_RECORD is

function STRING_TO_INT (S :STRING) return INTEGER is

¢ oo

end STRING_TO_INT;

end CONVERT;

procedure GET_VALID RECORD (REC : out ITEM_RECORD;
END_OF_DATA : out BOOLEAN) is {

end GET_VALID RECORD;

end RECORD_HANDLER;

GET_VALID_RECORD

procedure GET_VALID_RECORD (REC : out ITEM_RECORD; ‘
END_OF_DATA : out BOOLEAN) is

S : RECORD_STRING;
LENGTH_ERROR : BOOLEAN;

begin

loop
GET_NEXT_RECORD (S , LENGTH_ERROR, END_OF DATA);

if END_OF_DATA then
return;
elsif LENGTH ERROR or else not VALID RECORD(S) then
WRITE_ERROR (S) ; -
else
REC := CONVERT(S);
return;
end if;

end loop;

end GET_VALID RECORD;

I111.280

SHORT CIRCUIT CONDITION

r else

expression-1 or expression-2

expression-2 will be evaluated even :
if expression-1 is true

expression-1 r else expression-2

if expression-1 is true, expression-2
is not evaluated

A or else B r else ¢

evaluation of expressions (A,B,C)
proceeds in textual order

evaluation stops as soon as an
expression evaluates to true

PP

[111.290

7
3
i
1

GET_NEXT_RECORD

procedure GET_NEXT_RECORD (REC : out RECORD_STRING;
VALID_LENGTH,
END_OF DATA : out BOOLEAN)
I : NATURAL;
begin
if CHARACTER_IO.END OF FILE then
END_OF_DATA := TRUE
else
END_OF_DATA := FALSE;
I := 0;
while not END_OF _LINE and I < 43 loop
1 :=1 4+ 1;
GET (REC(I));
end loop;
VALID LENGTH := I = 43 and END_OF_LINE;
if not END_OF_LINE then
SKIP_LINE;
-- advances input to beginning
-- of next line
end if;

end if;

end GET_NEXT_RECORD;

is

VALID_RECORD

(Structure)

function VALID_BBCORD eee 1S

function LETTERS ... is
begin

end LETTERS;

function NUMERALS ... is
begin

end NUMERALS;

begin -- body of VALID_RECORD

end VALID_RECORD

) VALID_RECORD

function VALID RECORD (REC : in RECORD_STRING)

return BOOLEAN is

function LETTERS (S : STRING) return BOOLEAN is

! begin

for C in S'FIRST..S'LAST loop
if S(C) not in ‘'A*,..'Z' and S(C) not in ‘a'..'2’
then return FALSE;
end if;
end loop;
return TRUE;

end LETTERS;

I L N . 111.320

e e o oo Y

b el il

e

P

MEMBERSHIP OPERATOR

if S(C) not in 'A*.,.'Z' and
S(C) not in 'a'..'z' then

return FALSE;

e

'in' and ‘not in' are membership

operators

s

test for membership of a value
of any type within a corresponding

range, subtype, or constraint

returns boolean value

same precedence as relational .

operators

l I11.330

function NUMERALS (S : STRING)
return BOOLEAN is
begin
for C in S'FIRST..S'LAST loop
if S(C) not in '0'..'9' then
return FALSE;
end if;
end loop;

return TRUE;

end NUMERALS;

SHORT CIRCUIT CONDITION

begin -- body of VALID_RECORD

if LETTERS (REC(1..2)) and then NUMERALS (REC(3..6))

and then (REC(7) = 'N' or REC(7) = ‘L' or REC(7) = 'X')

and then NUMERALS (REC(38..43)) then

return TRUE;

else

return PALSE;

g, A SV A . S

end if;

end VALID RECORD;

if C1 and then C2 and then C3

is equivalent to

if C1 then

if C2 then

if C3 then

L I11.350

i P

Cnimpencebaoriiiniinasinnntiai AT i

<
o Al i ot e i darh

[CONVERT
All Character Name
(STRING)
R(l..2) =—=—eeccemeem————- > PREFIX
R(3..6) -=>STRING_TO_INT--> NUMBER
R(7) T > SUFFIX
R(8..37) ——c—mmmmmmmmemeeee > DESCRIPTION

R(38..43) ~->STRING_TO_INT--> SOURCE

Type

CHARACTER
1..9_999
CHARACTER

CHARACTER

1..999 999

I111.360

PREDEFINED ATTRIBUTE

POS

T'POS (X) gives the ordinal position
of the value X in the

discrete type T
T'POS(T'FIRST) = 0
type CHARACTER is
(nul, soh, stx, etx, ... ,
'0', 'l" '2.'] ’ '9" s o I
'A', lBl' OCI' cee 9 "2V, e ,

.a" .b" 'C', eos 'z" LI)'

Standard ASCII character set

CHARACTER'POS (NUL) = 0

CBARACTER'POS (CHARACTER'LAST) = 127

CHARACTER'POS('3') # 3

CHARACTER'POS('3"')

- CHARACTER'POS('0') = 3

I11.370

R e

I" CONVERT "475" TO 475 f

function DEC (C : CHARACTER)
return INTEGER is

BASE : constant INTEGER := CHARACTER'POS('0');

begin

return CHARACTER'POS(C) - BASE;

T R T ST < P T

end DEC;
DEC('4') = 4
DEC('7') = 7

S := "475"

N := 0;

for I in S'FIRST..S'LAST loop

N := N * 10 + DEC(S(I));

end loop;

PR Yo

I11.380

| SN

- B e e

function STRING_TO_INT (S : STRING)

return INTEGER is

VALUE : INTEGER := 0;

begin

for I in S'FIRST .. S'LAST loop

VALUE := VALUE * 10

+ CHARACTER'POS(S(1))

- CHARACTER'POS('0');

end loop;

return VALUE;

end STRING_TO_INT;

111.390 i

[-r-a<.*

¢

function

ARRAY SLICE

return INTEGER is ...

STRING_TO_INT ("451") = 451
N/ N/~
STRING INTEGER
-- declaration

PHONE_NUMBER : STRING (1..10);

-- assignment

PHONE_NUMBER := "4048943181";

-~ declaration

AREA CODE , EXTENSION : INTEGER;

-- assignment

AREA_CODE :=

STRING_TO_INT(PHONE_NUMBER (1..3));

-- sets AREA_CODE to 404

EXTENSION :=

STRING_TO_INT(PHONE_NUMBER (7..10))

-- sets EXTENSION to 3181

gy L e

STRING_TO_INT (S : STRING)

I111.400

~- declarations

PHONE NUMBER : STRING (1..10);

AREA_CODE STRING (1..3);

.

EXTENSION : STRING (l..4);

-~ assignments

PHONE_NUMBER := “4048943181";

AREA_CODE := PHONE_NUMBER (1..3);

EXTENSION := PHONE_NUMBER (7..10);

PHONE NUMBER (7..10) := "“1815%; 1

PHONE_NUMBER (4..6) :=
PHONE_NUMBER (1..3);

PHONE_NUMBER (1..5) 1=

PHONE_NUMBER (3..7);

111.410 {

ry ey

.-

function CONVERT (R : RECORD_STRING)

return ITBM.RECORD is
function STRING_TO_INT o

LN 2

end STRING_TO_INT;

begin
return (ITEM_CODB => (R(1..2),
STRING_TO_INT ({ R(3..6)),
R (7)).

DESCRIPTION => R (8..37),

QUANTITY =>
STRING_TO_INT (R(38..43)))

end CONVERT;

[

111.420

PP T CHP I N P .

RECORD AGGREGATE

i ITEM_CODE : record

PREFIX : STRING (1..2);

NUMBER : range 0..9_999;

SUFFIX : CHARACTER;

end record;

A record aggregate denotes a value constructed

from component values.

NEW_ITEM : ITEM_CODE;

NEW_ITEM := (“CT" , 2493 , 'N') -~ assignment

[| L l
NEW ITEM = | CT | 2493 | N |
l | | |

position - textual order

NEW_ITEM := (NUMBER => 2493, PREFIX => "cT,

SUFFIX => 'N')

named components

-~ object declaration

111.430

- = e g e

] RECORD AGGREGATE

-- named component

(ITEM_CODE =>

-- positional

(R(1..2), -- PREFIX
STRING_TO_INT(R(3..6)), -- NUMBER
R(7)), -- SUFFIX

-- named component
DESCRIPTION => R(8..37),

array slice

-- named component
SOURCE => STRING_TO_INT(R(38..43)))

array slice

o -
. .

[
N .

L 111.440

CHARACTER INPUT-OUTPUT

The package TEXT_IO contains the definition of all the text

input-output primitives.

It contains the specifications

procedure GET(ITEM : out CHARACTER);

procedure PUT(ITEM : in CHARACTER);

procedure PUT(ITEM : in STRING);

[y [—
* ' . .

I111.450

L ‘

f WRITE_ERROR and WRITE_RECORD

! - procedure WRITE_ERROR (REC : in RECORD_STRING) is

begin

PUT(" INVALID DATA: * & REC);

NEW_LINE;

end WRITE_ERROR;

Y ALY SIS TS

procedure NRITQ_REEORD (REC : in ITEM_RECORD) is
use RECORD_I0;
begin
case REC.ITEM_CODE.SUFFIX is

when 'N' => WRITE (IMMEDIATE, REC);

when 'X' | ‘L' => WRITE (DEFERRED, REC);
others => null;
end case;

end WRITE_RECORD;

L 111.460

S T M P —t— | ——CA—-

TEXT FILES

All characters occupy exactly one column.

Characters of a file are considered to form a sequence

of lines.

Layout control

LINE - returns current line number

COL - returns current column number

END_OF LINE - returns TRUE if there is no character
k left on the current input line

]
‘ (defined for IN_FILE only)

i SKIP_LINE - advances the input to the beginning
of the next line (defined only for

IN_FILE)

NEW_LINE - terminates current output line

(defined only for OUT_FILE)
- SET_coOL - sets the current column number

| SET_LINE_LENGTH - sets the line length

returns current line length

LINE_LENGTH

I. 111.470

FILE OF RECORDS

i . A file is associated with an ordered collection of elements,

all of the same type.

Let Et denote an element of type T.

| |
l | | ITEM_CODE !
] Et | = | =—mmmccmemem e | DESCRIPTION
| | | PREFIX | NUMBER | SUFFIX |

| |

| 1 1
I
|
I

I I | | |

I

|

QUANTITY |
|

X

I1I1.480

at . da bttt M Sttt i it it T b ssisnuiiiisibiinhatciin Y s aaeniti s

package RECORD_IO 1is new

INPUT_OUTPUT (ITEM_RECORD) ;

INPUT_OUTPUT is a standard generic
package which provides the

calling conventions for operations
such as OPEN, CLOSE, READ, and

WRITE.

generic (type ELEMENT TYPE)

package INPUT_OUTPUT is

procedure WRITE (FILE : in OUT_FILE;

ITEM : in

ELEMENT_TYPE);

A generic package is a model which

can be parameterized.

L II1.490

package RECORD_IO is new
INPUT_OUTPUT (ITEM_RECORD);
—\

parameter

generic instantiation

obtains a copy (instance)
of the model with actual
parameter ITEM_RECORD
substituted for the
generic formal parameter

ELEMENT_TYPE.

T S R T SR G

II1.500

: IMMEDIATE,DEFERRED : RECORD_IO.OUT_FILE;

OUT_FILE is a file type with

write-only access

it is declared in the package

INPUT_OUTPUT

it is instantiated within

RECORD_10 | *

I11.510

OPEN_FILES and CLOSE_FILES

The generic standard package INPUT_OUTPUT contains the

specifications

procedure CREATE(FILE : i

——

out OUT‘FILB;

n
NAME : in STRING);

which establishes a new external file associates the given

file with it; this association "opens" the file, and

procedure CLOSE(FILE : in out OUT_FILE);

—— ——

which breaks the association.

procedure OPEN_FILES is
use RECORD 10;
begin -
CREATE (IMMEDIATE, “"external file name");
CREATE (DEFERRED, "external file name");
end OPEN_FILES,

procedure CLOSE_FILES is
use RECORD_IO;

begin
CLUSE (IMMEDIATE); -
CLOSE (DEFERRED);

end CLOSE_FILES;

I11.520

" R X L) " DR S

RN TR

PROGRAM STRUCTURE

. g o

Packages are a versatile feature used in]

- a number of ways in the construction of

Ada programs.

Packages allow for the specification of groups

of logically related entities:

pools of common data and associated

type declarations

groups of related subprograms (either

within a single program or as a subprogram

library)

a type declaration along with subprograms
to serve as operators on the type

(data abstraction)

The separation of a package body from its
specification provides an important

information hiding capability.

L III.530

GROUPS OF TYPE AND OBJECT

DECLARATIONS

package WORK_DATA is

type DAY is (MON,TUE,WED, THU,FRI,SAT,SUN);
type HOURS is INTEGER range 0..2400;
type TIME TABLE is

array (MON..SUN) of HOURS;

WORK_HOURS : TIME TABLE;

NORMAL_HOURS : constant TIME_TABLE

¢t= (MON..THU => 850, FRI => 600,

SAT | SUN => 0);

end WORK_DATA;

o ———e

I11.540

o 5

e bt b i il . LTI

VISIBILITY

procedure EXAMPLE ...

package WORK DATA is
end WORK DATA;

Identifiers declared within WORK DATA
can be used here, denoted by

selected components

Examples of legal references:
WORK_DATA.DAY

WORK_DATA .WORK_HOURS

"end EXAMPLE;

WORK DATA and its components are not

visible outside of EXAMPLE.

I11.550

USE CLAUSE

procedure EXAMPLE ...

package WORK DATA is

end WORK _DATA;

procedure P2 ...

e e
~

use WORK_DATA;

Identifiers declared within WORK_DATA
are now directly visible.

Examples of legal references:
TIME_TABLE
NORMAL HOURS

end P2;
The use clause is no longer effective
outside of P2, so selected component

notation must again be used to reference
the objects defined within WORK_DATA.

end EXAMPLE;

WORK DATA and its components are again
not visible at this point.

111.560

!
|
1
i
'i
|

procedure MAIN is
package WORK DATA is

NORMAL_HOURS : constant TIME TABLE
:= (MON..THU => 850,FRI => 600,
SAT | SUN => 0);
end WORK_DATA;

procedure A is

use WORK_DATA;

NORMAL HOURS : INTEGER;
-- NORMAL_HOURS refers to the integer;
-- it cannot be hidden by the
-- the same identifier declared
-- in the package.

-- The use clause makes all identifiers
-- in the package directly visible
-- except for the identifier NORMAL HOURS.

-~ It can only be denoted as a
-- selected component, that is,
- WORK_DATA.NORMAL_HOURS (eoo)

end A;

end MAIN;

I111.570

STRUCTURE OF EXAMPLE II1

[—
)

procedure PROCESS_RECORDS is

Package RECORD_HANDLER is

end RECORD_HANDLER;

I

|

I

I

|

|

I

|

I

| use RECORD HANDLER;
: ITEM : ITEM_RECORD;
|
|
|
|
|
l
|
I
I
|

- D - - e - D S e e . . . -

Package body RECORD_HANDLER is

end RECORD_HANDLER;

. —— — — — . — — " — — — — — — — o— ———

begin

end PROCESS_RECORDS;

; [111.580

bfon L

procedure PROCESS_RECORDS is

package RECORD_HANDLER is
-- type & variable declarations
~- subprogram specifications

end RECORD_HANDLER;

use RECORD_HANDLER:
ITEM : ITEM RECORD;
-- variabYe declaration

package body RECORD HANDLER is
-- type & variable declarations
-- subprogram bodies

end RECORD_HANDLER;

begin

end PROCESS_RECORDS;

pramgeer ey

I11.590

M G ey -

I procedure PROCESS_RECORDS is

package RECORD_HANDLER is
-- package specification

-- visible part

end RECORD_HANDLER;

P

use RECORD_HANDLER;
ITEM : ITEM_RECORD:
~- variable declaration

package body RECORD HANDLER is

-- package body
-- entities not accessible
-- outside the package

end RECORD_HANDLER;

—— — — — — g " ety i

——— — —— — ity S o — — — — — — —— — —— o — — —— w—
[
— D s — — — — —— — —— —— — ——— —— — — — ——— ——— —

begin

end PROCESS RECORDS;

I L 111.600

! more compilation units

I SEPARATE COMPILATION
PROGRAM - collection of one or

COMPILATION UNIT -~
. Subprogram body

. package specification

. package body

Compilation units of a program

are said to belong to a

PROGRAM LIBRARY

IIr.610

SERARATE COMPILATION

Race

Version 1

procedure PROCESS_RECORDS is

package RECORD_HANDLER is
-- contains type declarations .
~- and subprogram specifications
end RECORD HANDLER;

e oy e e e e L

use RECORD HANDLER;
ITEM : ITEﬁ_RECORD;

package body RECORD_HANDLER
is separate;

begin

end PRUCESS_RECORDS;

——— e e
——— e e e i o e e e e e]

RS

[

The package body is to be compiled
separately.

separate (PROCESS RECORDS)
with TEXT 10; -
package body RECORD_HANDLER is
-~ local declarations
-- subprogram bodies

end RECORD_HANDLER;

—— — . — o o it o]

I111.620

g COMPILATION OF PACKAGE BODY

LS.

separate (PROCESS_RECORDS)
with TEXT_IO;
package body RECORD HANDLER is

-~ local declarations and the bodies
-- of the subprograms declared in
-~ the specification part are found

-~ in the package body

end RECORD HANDLER;

The with clause indicates that the package

| TEXT_IO will be used in this package body.

The separate clause says that the specifications
for this package can be found in the program
unit named PROCESS_RECORDS. Identifiers

visible at the point of the separate declaration

I in PROCESS_RECORDS are also visible in the

. package body.

} [II1.630~-w .

SEPARATE COMPILATION

Version 2

Three program units

1. package specification
2. subprogram (program)

3. package body

Each compiled separately.

Package specification must

be compiled first.

Procedure and package body
may be compiled (and

recompiled) in any order.

The package body is no longer

within PROCESS_RECORDS, so

no segarate'clause is used.

predbn s s

! SEPARATE COMPILATION

Version 3

package RECORD HANDLER is
-~ type declarations and
-~ subprogram specifications

end RECORD_HANDLER;

with RECORD_HANDLER;

procedure PROCESS_RECORDS is
use RECORD_HANDLER;

begin

end PROCESS_RECORDS;

with TEXT I0;
package body RECORD HANDLER is
use TEXT I10;
-- declaTration of entities
-- not accessible outside
-- package body and
-- subprogram bodies
function VALID RECORD ...
return BOOLEAN is separate;

end PROCESS_RECORDS;

separate (RECORD_HANDLER)
function VALID_RECORD ... is

end VALID_RECORD

e 4 e
— v — —

e —_——— T ISP atingiliainii e gttt

g

SEPARATE COMPILATION

Version 3

Within the body of RECORD_HANDLER,
the separate compilation of a subprogram

within another program unit is illustrated.

ot 7z oautvy

function VALID_RECORD (REC : in RECORD_STRING)

return BOOLEAN is separate;

The body of this function would be compiled
as a fourth compilation unit. It must be
compiled after the body of RECORD_HANDLER

(and recompiled any time that body is recompiled).

separate (RECORD_HANDLER)
function VALID_RECORD ... is

end VALID RECORD;

I11.670

Example III

Final Version

. .

package RECORD_HANDLER is
type ITEM_ RECORD is
record
ITEM_CODE : record
PREFIX : STRING(l..2);
; NUMBER : range 0..9_999;
{ SUFFIX : CHARACTER°
end record;
DESCRIPTION : STRING(1l..30);
SOURCE : range 0..999_999;
end record;
procedure OPEN FILES;
procedure CLOSE FILES;
procedure GET_VKLID_RECORD (REC : out ITEM_RECORD;
END OF DATA : out BOOLEAN);
procedure WRITE RECORD (REC : in ITEM_RECORD):
end RECORD HANDLER,

with RECORD_HANDLER; *
procedure PROCESS_RECORDS is

use RECORD_HANDLER;
ITEM : ITEM_RECORD; -- defined in RECORD_HANDLER
NO_MORE_RECORDS : BOOLEAN := FALSE;

begin
OPEN FILES;
loop
GET_VALID RECORD (ITEM, NO_MORE_RECORDS) ;
exit when NO _MORE RECORDS ;™
WRITE_RECORD (ITEM) ;
end loop;
CLOSE_FILES;
end PROCESS_RECORDS;

L L I11.680 2 ﬁ

Lanan BN |

[Sy
. '

with TEXT_I10;
package body RECORD HANDLER is

use TEXT 10;
subtype RECORD _STRING is STRING (1..43);
package RECORD 10 is new INPUT_OUTPUT (ITEM_| RECORD) ;

IMMEDIATE, DEFERRED : RECORD_ IO .OUT_FILE;

procedure OPEN FILES is
use RECORD IO,

begin
CREATE (IMMEDIATE, "external file name");

CREATE (DEFERRED, "external file name”);
end OPEN_FILES;

procedure CLOSE _FILES is
use RECORD IO,

begin
CLOSE (IMMEDIATE);
CLOSE (DEFERRED) ;

end CLOSE_FILES;

procedure GET NEXT RECORD (REC : out RECORD STRING;
- - VALID LENGTH, -
END_OF DATA : out BOOLEAN) is
I : NATURAL;
begin
if CHARACTER_IO.END OF FILE then

END_OF_DATA := TRUE;
else

END_OF_DATA := FALSE;

I og o'

while not END_OF LINE and I < 43 loop
I :=1+ 17
GET (REC(I));

end loop;

VALID_LENGTH := I = 43 and END_LINE;

if not END_OF_LINE then
SKIP LINE;
--- advances input to beginning
-~ of next line
end if;
end if;

end GET_NEXT_RECORD;

function VALID RECORD (REC : in RECORD_STRING)
retuin BOOLEAN is separate;

I111.690

L o

g

[

3

< mmer e -

P—— Pt 4
. + . .

R

Ay oy n e

procedure WRITE_RECORD (REC : in ITEM_RECORD) is
use RECORD I0; -

begin
case REC.ITEM _CODE.SUFFIX of
when 'N' => WRITE (IMMEDIATE, REC);
when 'X' | ‘L' => WRITE (DEFERRED, REC); i

others => null;
end case;
end WRITE_RECORD;

procedure WRITE_ERROR (REC : in RECORD_STRING) is ‘
begin - "
PUT("INVALID DATA: " & REC); :
NEW_LINE; |

end WRITE_ERROR; 4

function CONVERT (R : RECORD_STRING) return ITEM_RECORD is

function STRING_TO_INT (S : STRING) return INTEGER is

VALUE : INTEGER := 0;
begin

for I in S'FIRST..S'LAST loop

VALUE := 10 * VALUE + CHARACTER'POS(S(I)) -

CHARACTER'POS ('0'); '
end loop;
return VALUE;

end STRING_TO_INT;

begin -- body of CONVERT
return (ITEM CODE => (R(1l..2),
- STRING_TO_INT (R(3..6)),
R(7)),
DESCRIPTION => R(8..37),
SOURCE => STRING TO INT (R(38..43)));
end CONVERT; - -

procedure GET VALID RECORD (REC : out ITEM_RECORD);
- - END_OF_DATA : out BOOLEAN) is
S : RECORD STRING; -
LENGTH ERROR : BOOLEAN;
begin
loop
GET NEXT RECORD (S , LENGTH ERROR, END OF DATA);
if END_OF_DATA then - -7
return;
elsif LENGTH ERROR or else not VALID RECORD(S) then
WRITE_ERROR (S) ;
else
REC := CONVERT(S);
return;
end if;
end loop;
end GET_VALID RECORD;

end RECORD_HANDLER;

111.700 C

separate (RECORD HANDLER)
function VALID_BECORD (REC : in RECORD_STRING)
return BOOLEAN is

| ‘ . v SR
S L I
I

function LETTERS (S : STRING) return BOOLEAN is
begin
) for C in S'FIRST..S'LAST loop :
P if S(C) not in 'A'..'Z' and S(C) not in 'a'..'2’ 1
then return FALSE;
end if;
end loop;
return TRUE;
end LETTERS;

function NUMERALS (S : STRING) return BOOLEAN is
begin
for C in S'FIRST..S'LAST loop
if S(C) not in '0'..'9' then
return FALSE;
end if;
end loop;
return TRUE;
end NUMERALS; ‘

begin -- body of VALID RECORD
if LETTERS (REC(1..2)) and then NUMERALS (REC(3..6))
and then (REC(7) = 'N' or REC(7) = 'L' or REC(7) = 'X')
and then NUMERALS (REC(38..43)) then
return TRUE
else
return FALSE
end if;
end VALID RECORD;

[T
. .

Sn——
. .

1. i
1L
:

I11.710

|

SUMMARY

Packages

Records and record aggregates

Case statement

Input-Output

Program Structure

visibility

Separate Compilation

EXAMPLE IV

ENUMERATION TYPES

Iv.100

e ,

™ T T

OBJECTIVES

Enumeration Types

Array Aggregates

Named Parameter Association

-

Iv.110

MaEEEES S

[

PO

package NAVIGATION is

type DIRECTION is (NORTH, EAST, SOUTH, WEST);
type TURN is (LEFT, RIGHT, ABOUT, NONE);

| DIRECTION) return DIRECTION;
function TURN_RIGHT (D DIRECTION) return DIRECTION;
function TURN ABOUT (D DIRECTION) return DIRECTION;

function CHANEE_COURSE (D : DIRECTION; T : TURN) ; '
return DIRECTION; !

function MANEUVER (OLD, NEW : DIRECTION) return TURN;

function TURN LEFT (D

end NAVIGATION;

package body NAVIGATION is

function TURN_LEFT (D : DIRECTION) return DIRECTION is

-~ declare a local variable to illustrate use
-- of a single return at the end of the body

NEW D : DIRECTION;

begin
case D of
when NORTH => NEW D := WEST;
when SOUTH => NEW D := EAST;
when EAST => NEW D := NORTH;
when WEST => NEW D := SOUTH;
end case; -

return NEW_D;

end TURN_LEFT

Iv.120

function TURN_RIGHT (D : DIRECTION) return DIRECTION is

-~ a return statement will appear in each |
-~ alternative of the case statement

begin
5 case D is

when NORTH => return EAST;
when SOUTH => return WEST;

f] when EAST => return SOUTH;
‘ when WEST => return NORTH;
end case;

end TURN_RIGHT;

- - - - - - - - - > =P - -

15 function TURN_ABOUT (D : DIRECTION) return DIRECTION is

- -- look up answer in a constant array

NEW D : constant array (DIRECTION) of DIRECTION
¢= (NORTH => SOUTH ,
SOUTH => NORTH ,
EAST => WEST ,
WEST => EAST)i
begin

return NEW D(D);

end TURN_ABOUT;

- - - - - = -

function CHANGE_COURSE (D : DIRECTION ; T : TURN)
return DIRECTION is

begin

; case T is

! when LEFT => return TURN LEFT(D);
! when RIGHT => return TURN RIGHT(D);
when ABOUT => return TURN_ABOUT(D);
: when NONE => return D;

{ end case;

E I. * end CHANGE_COURSE;

- - - - - -y - - - - -

L.
[I1V.130

NN

X [function MANEUVER (OLD, NEW : DIRECTION) return TURN is
! begin

. if NEW = TURN_LEFT(OLD) then
return LEFT;]
elsif NEW = TURN RIGHT(OLD) then i
return RIGHT; :
elsif NEW = TURN ABOUT(OLD) then
return ABOUT;
else :

return NONE;
end if;

end MANEUVER;

end NAVIGATION;

Iv.140

[

package NAVIGATION is

type DIRECTION is (NORTH, EAST, SOUTH, WEST);

type

function
function
function

function

function

TURN is (LEFT, RIGHT, ABOUT, NONE);

TURN_LEFT (D : DIRECTION) return DIRECTION;

TURN_RIGHT (D : DIRECTION) return DIRECTION;
TURN_ABOUT (D : DIRECTION) return DIRECTION;
CHANGE_COURSE (D : DIRECTION; T : TURN)

return DIRECTION;

MANEUVER (OLD, NEW : DIRECTION) return TURN;

end NAVIGATION;

IV.150

package body NAVIGATION is

function TURN_LEFT ... is

end TURN_LEFT;

function TURN_RIGHT ... is

end TURN_RIGHT;

function TURN_ABOUT ... is

e o

end TURN_ABOUT;

- P " T - S o -

function CHANGE_COURSE ... is

end CHANGE COURSE;

- . - ——— = o= " — =

function MANEUVER ... is

end MANEUVER;

end NAVIGATION;

IV.160

ENUMERATION TYPES

type DIRECTION is

(NORTH, EAST, SOUTH, WEST);
OLD_D. NEW_D : DIRECTION;
OLD D := NORTH;

NEW D := OLD_D;
Predefined attributes: J

DIRECTION'FIRST = NORTH

DIRECTION'LAST = WEST

DIRECTION'SUCC(EAST) = SOUTH

DIRECTION'PRED(WEST) = SOUTH

DIRECTION'POS (SOUTH) = 2
DIRECTION'SUCC({DIRECTION'LAST) -- ralse the exception
DIRECTION'PRED (DIRECTION'FIRST) -~ OBJECT_ERROR

Iv.170

! function TURN_LEFT (D : DIRECTION) return DIRECTION is

Py
[==
L]

B -- declare a local variable to illustrate use
: -- of a single return at the end of the body

NEW D : DIRECTION;

begin i
case D is
when NORTH => NEW D := WEST;
when SOUTH => NEW D := EAST;
when EAST => NEW D := NORTH;
when WEST => NEW D := SOUTH;

end case;
return NEW_D;

end TURN_LEFT;

function TURN_RIGHT (D : DIRECTION) return DIRECTION is

-- a return statement will appear in each
-- alternative of the case statement

begin

_ case D is

£ when NORTH => return EAST;

i when SOUTH => return WEST;

| when EAST => return SOUTH;
when WEST => return NORTH;

end case;

end TURN_RIGHT;

[I1V.180

The order relations between enumeration values follow the

order of listing:

NORTH < EAST <

for D in NORTH

end loop;

SOUTH < WEST

.+ WEST loop

for D in DIRECTION'FIRST .. DIRECTION'LAST loop

end loop;

IV.190

Alternate solution to TURN_RIGHT

function TURN_RIGHT (D : DIRECTION) return DIRECTION is
begin
if D = DIRECTION'LAST then
return DIRECTION'FIRST;
else
return DIRECTION'SUCC(D);
end if;
end TURN_RIGHT;

IV.200 ; 1

: ey ek N J

function TURN_ABOUT (D : DIRECTION) return DIRECTION is
-- look up answer in a constant array

: constant array (DIRECTION) of DIRECTION
t= (NORTH => SOUTH ,
SOUTH => NORTH ,
EAST => WEST ,
WEST => EAST):

begin

return NEW D(D);

end TURN_ABOUT;

Iv.210

j ARRAY INDEXED BY

ENUMERATION

—
PP g perr

function TURN_ABOUT (D : DIRECTION)

return DIRECTION is

NEW D : constant array (DIRECTION) of DIRECTION

¢:= (NORTH => SOUTH,
SOUTH => NORTH,
EAST => WEST,

WEST => EAST);

-- NEW D is a one~-dimensional

-- array with four components

-- Each element (or component)
-- may take on one of the
-- enumerated values of type

~- DIRECTION

-- The four elements are

-- denoted by
-- NEW_D (NORTH)
- NEW_D (EAST)

——

NEW_D (SOUTH)

I' -- NEW_D(WEST)

[Iv.220

ARRAY AGGREGATES

NEW_D : constant array (DIRECTION)

of DIRECTION

:= (NORTH => SOUTH,

SOUTH => NORTH,

EAST => WEST,

WEST => EAST),

-~ NEW_D(NORTH) = SOUTH
-- NEW_D(SOUTH) = NORTH
-- NEW_D(EAST) = WEST
-- NEW_D(WEST) = EAST

begin
return NEW_D (D);

end TURN_ABOUT;

IvV.230

An aggregate denotes an array constructed from component

values.

Examples : .
' type TABLE is array (1..10) of INTEGER;
A : TABLE H (7'9'5,103L_214'81600);

A(l) = 7 expressions which define
A(2) =9 the values to be
A(3) = § associated with

. components given by
A(l10) = 0 position (index

order for array.

components)

IV.240

B : TABLE := (5,4,8,1, others => 20);

\~_ __/
. \/
I positional
B(l) = §
| 2(2) = ¢
’ B(3) = 8
‘ B(4) = 1

; B(5) thru B(10) = 20

C ¢ TABLE := (2 | 4] 10 => 1, others => 0);

\ /
\/
named
components
C(1) = 0 ‘ ‘
C(2) =1
C(3) =0
C(4) =1

C(5) thru C(9) = 0

C(l10) = 1

An aggregate must provide values for all components.

The choice "others" stands for all components not specified

by previous choices.

If used, "others"” must appear last.

[IV.250 ;

type MATRIX is array (INTEGER range <>, INTEGER range <>)

-

OF FLOAT;

NULL_MATRIX : constant MATRIX

= (1l..10 => (1..10 => 0.0));

An aggregate can be used to give values to components and to
provide bounds for an array object. In this case, the

choice “others"™ cannot be used.

An aggregate for an n-dimensional array is written as a one-

dimensional aggregate of components that are (n-1)-

dimensional array values.

A e D e s ns e

Iv.260

ey SER

[,

[rS——,

function CHANGE_COURSE (D : DIRECTION ; T : TURN)

begin

case T is
when LEFT =>
when RIGHT =>
when ABOUYT =>
when NONE =>
end case;

end CHANGE_COURSE;

return DIRECTION is

return TURN LEFT(D);
return TURN:RIGHT(D)
return TURN_ABOUT(D)
return D;

Iv.270

s 1 ~ -

function MANEUVER (OLD, NEW : DIRECTION) return TURN is

begin

if NEW = TURN LEFT(OLD) then
return LEFT;

elsif NEW = TURN RIGHT(OLD) then
return RIGHT;

elsif NEW = TURN ABOUT(OLD) then
return ABOUT;

else
return NONE;

end if;

end MANEUVER;

IV.280

[NAMED PARAMETER ASSOCIATION

CURRENT_DIRECTION, NEXT_DIRECTION : DIRECTION; _ 1

Equivalent subprogram calls:

MANUEVER (OLD => CURRENT_DIRECTION,

NEW => NEXT_DIRECTION);

E MANEUVER (NEW => NEXT_DIRECTION,

| OLD => CURRENT_DIRECTION) ;

Form -

formal_parameter => actual parameter

Iv.290

) ADDITIONAL
EXAMPLES

OF THE USE OF

ENUMERATION
TYPES
|
|
y
L IV.300

[YN

type MONTH_NAME is

(JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY,

AUGUST, SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER);

MONTH : MONTH_NAME ;

if MONTH = DECEMBER and Day = 31 then

MONTH := JANUARY ;

Iv.310

TR

type MONTH NAME is (...) ;

NUMBER_OF DAYS : constant array (MONTH_NAME) of INTEGER

¢= (APRIL | JUNE | SEPTEMBER |
NOVEMBER => 30,
FEBRUARY => 28,

> 31) ;

others

if DAY = NUMBER_OF_DAYS (MONTH ; then
DAY := 1 ;
if MONTH = DECEMBER then
MONTH := JANUARY ;
YEAR := YEAR + 1 ;

else
MONTH := MONTH_NAME'SUCC (MONTH);
end if ;
else
DAY := DAY + 1 ;

end if ;

Iv.320

— eum N

-- use of an enumeration as a state indicator

i

nn

function FIND CHAR (S : STRING; C : CHAR)
return NATURAL is

-

-- function to find the position of the first
-- occurence of a character C in a string S;
-- returns S'LENGTH + 1 if C is not present;
ASSUMES S IS NOT NULL!}

STATE : (SEARCHING, FOUND, NOTPRESENT);
i POS t NATURAL range l..S'LENGTH;
begin
STATE := SEARCHING;
POS t= 1; -- assumes S is not null
loop

if S(P0S) = C then
STATE := FOUND;

elsif POS = S'LENGTH then
STATE := NOTPRESENT;

else
POS := POS + 1;
end if;

exit when STATE /= SEARCHING;
end loop;

! if STATE = FOUND then
return POS;

else -~ STATE = NOTPRESENT
return S'LENGTH + 1;

end if;

end FIND_CHAR;

1
1.

L IV.330 i

Py oug

begin

Bt
.

STATE := SEARCHING ;

| |
i ' loop
if ... then
end if;
exit when STATE /= SEARCHING ;
end loop ;
|
| |
i i

1V.349

'M P N .,

within the loop -

if S(POS) = C then

STATE := FOUND ;

elsif POS = S'LENGTH then

STATE := NOTPRESENT ;

else

POS := POS + 1 ;

end if ;

IV.350

2
.
S
b
Pt
"

upon exit from loop -

if STATE = FOUND then

return POS ;

else -- STATE = NOTPRESENT

return S'LENGTH + 1 ;

end if ;

1V.360

B e e e T o

S

-- This function compares two strings, which may not be of equal
==~ length. Two strings are equal if they match through the length

-~ of the shorter string and the longer string is blank filled

beyond that point.

function STRING_EQUAL (S1, S2 : STRING) return BOOLEAN is
type SEARCH_STATE is
(EQUAL, NOT_EQUAL, S1_LONGER, S2_ LONGER, CHECKING);
STATE : SEARCH_STATE := CHECKING;
INDEX : INTEGER range l..MAX(S1'LENGTH,S2'LENGTH) := 1;

Iv.370

S

s

EQUAL STRINGS

i

STRING_EQUAL ("BEST" , "BEST") -~ TRUE
STRING_EQUAL ("BEST" , "BEAT") -~ FALSE
STRING_EQUAL (*"BET" , "BETTER") -- FALSE

STRING_EQUAL ("BET » , "BET ") == TRUE

STRING_EQUAL (L, -- TRUE #

Iv.380

L ann BN |

[T,

function BLANKS (S : STRING) return BOOLEAN is
-- Returns true only for a string of all blanks
begin
for I in 1l.. S'LENGTH loop
if S{(1) /= " ' then
return FALSE;
end if;
end loop;
return TRUE;

end BLANKS;

—-— . =

begin
-- first check for null strings
if S1'LENGTH = 0 then
if S2'LENGTH = 0 then
STATE := EQUAL;
else
STATE := S2_LONGER;
end if;
elsif S2'LENGTH = 0 then
STATE := S1_LONGER;
end if;

-- check the strings character by character
while STATE = CHECKING loop
if S1(INDEX) /= S2(INDEX) then
STATE := NOT_EQUAL;
elsif INDEX = S1'LENGTH then
if INDEX = S2'LENGTH then
STATE := EQUAL;
else
STATE := S2_LONGER;
end if;
elsif INDEX = S2'LENGTH then
STATE := S1_LONGER;
end if;
INDEX := INDEX + 1;
end loop;

~- return with value based on current state

case STATE is
when EQUAL => return TRUE;
when NOT EQUAL => return FALSE;
when S1 LONGER => return BLANKS(S1(INDEX..S1'LENGTH));
when 82:LONGBR => return BLANKS (S2 (INDEX..S2'LENGTH));
when CHECKING => null; -- this branch is unreachable

end case;
end STRING_EQUAL;

IV.400

-- This function compares two strings, which may not be of equal
length. Two strings are equal if they match through the length
of the shorter string and the longer string is blank filled

-- beyond that point.

function STRING EQUAL (S1, S2 : STRING) return BOOLEAN is
type SEARCH STATE is
(EQUAL, NOT EQUAL, S1 LONGER, S2 LONGER, CHECKING);
STATE : SEARCH_STATE := CHECKING; -
INDEX : INTEGER range 1l..MAX(S1'LENGTH,S2'LENGTH) := 1;

function BLANKS (S : STRING) return BOOLEAN is :
-- Returns true only for a string of all blanks i
begin i
for I in 1.. S'LENGTH loop .
if s(1) /= ' ' then P
return FALSE; ;
end if;
end loop;
return TRUE;
end BLANKS;

begin

-- first check for null strings
if S1'LENGTH = 0 then
if S2'LENGTH = 0 then
STATE := EQUAL;
else
STATE := S2_LONGER;
end if;
elsif S2'LENGTH = 0 then
STATE := S1 LONGER;
end if; -

-- check the strings character by character
while STATE = CHECKING loop
if S1(INDEX) /= S2(INDEX) then
STATE := NOT EQUAL;
elsif INDEX = ST'LENGTH then
if INDEX = S2'LENGTH then
STATE := EQUAL;
else
STATE := S2_LONGER;
end if;
elsif INDEX = S2'LENGTH then
STATE := S1_LONGER;
end if;
INDEX := INDEX + 1;
end loop;

IvV.410

-=- return with value based on current state

case STATE is
when EQUAL => return TRUE;
when NOT EQUAL =)> return FALSE;
when S1 LONGER => return BLANKS(SI(INDEX..Sl'LENGTH));
when SZ_LONGER => return BLANKS (S2 (INDEX..S2°'LENGTH));
when CHECKING => null; -- this branch is unreachable

end case;

end STRING_EQUAL;

IV. 420

T P T T Y S S e

_ ﬁiq —

— ﬂ
f .
Vi =

SUMMARY

Enumeration Types

Array Aggregates

Named Parameter Association

b .

[IV. 430

B oo

g i e L S

C—mt
.

EXAMPLE V

OVERLOADING

and

EXCEPTIONS

OBJECTIVES

Overloading

Exceptions

Packages and Exceptions

vV.110

package MATRIX_OPS is

type MATRIX is array (INTEGER range <>, INTEGER range <>)
of FLOAT;

function "+% (A : FLOAT; M : MATRIX) return MATRIX;

function "4" (M1, M2 : MATRIX) return MATRIX;

function "*" (A : FLOAT; M : MATRIX) return MATRIX;

function "** (M1, M2 : MATRIX) return MATRIX;

end MATRIX_OPS;

package body MATRIX_OPS is
function "+" (A : FLOAT; M : MATRIX) return MATRIX is
TEMP : MATRIX(M'FIRST(1l)..M'LAST(l) , M'FIRST(2)..M'LAST(2)
begin

for I in M'FIRST .. M'LAST loop
for J in M'FIRST(2) .. M'LAST(2) loop
TEMP(I,J) := A + M(I,J);
end loop;
end loop;

return TEMP;

end "+";

1- V.120

i sedioinsine i aClosen g , . -

POPURESIEN

function "+" (M1, M2 :

TEMP :
IOFFSET, JOFFSET :
begin

IOFFSET
JOFFSET

for 1 in M1'FIRST(1l)

for J in M1'FIRST(2)
:= M1(I,J) + M2(I + IOFFSET, J + JOFFSET);

TEMP(I,J)
end loop;
end loop;
return TEMP;

end "+";

function "*" (A :
TEMP :
begin

for I in M'FIRST{(1)

for J in M'FIRST(2)
t= A *

TEMP(I,J)
end loop;
end loop;
return TEMP;

end "*" ;

:= M2'FIRST(1)
1= M2'FIRST(2)

MATRIX) return MATRIX is

- M1'FIRST(1):
- M1'FIRST(2);

«o M1'LAST(1l) loop
.o M1'LAST(2) loop

«e« M'LAST(1) loop
ee M'LAST(2) loop
M(I,J);

FLOAT; M : MATRIX) return MATRIX is

MATRIX(M1'FIRST..M1°'LAST, M1'FIRST(2)..M1'LAST(2));
INTEGER;

MATRIX(M'FIRST(l)..M'LAST(1l), M'FIRST(2)..M'LAST(2));

V.130

premn -

function "*" (M1, M2 : MATRIX) return MATRIX is i

‘ TEMP : MATRIX(M1'FIRST(l)..M1'LAST(1), M2'FIRST(2)..M2'LAST(2)); ;
OFFSET : constant INTEGER := M2'FIRST(l) - M1'FIRST(2);

begin

for I in M1'FIRST(1) .. M1'LAST(l) loop
for J in M2'FIRST(2) .. M2°'LAST(2) loop
TEMP(I,J) := 0.0;
for K in M1'FIRST(2) .. M1'LAST(2) loop
TEMP(I,J) := TEMP(I,J) + M1(I,K) * M2(K + OFFSET, J);
end loop;
end loop;
end loop;

return TEMP;
end "*»,

end MATRIX_OPS;

I V.140

R VUV . . _
- - . e+ 4ot o
s i et

il '

ot oHN

package MATRIX_OPS is

i type MATRIX is array (INTEGER range <>, INTEGER range <>)
of FLOAT;

function "+ (A : FLOAT; M : MATRIX) return MATRIX;

function "+" (M1, M2 : MATRIX) return MATRIX;

function "*" (A : FLOAT; M : MATRIX) return MATRIX;

function "*" (Ml, M2 : MATRIX) return MATRIX;

end MATRIX_OPS;

l. V.150

OVERLOADING OF OPERATIONS

package MATRIX OPS is

function "+ (A : FLOAT, M : MATRIX)

return MATRIX;

function "+" (M1, M2 : MATRIX)
return MATRIX;

end MATRIX_OPS;

A function named by a character string is used to define

additional meaning for an operator

V.160

T ey N

e T - oy e s
7w o, e g S et e AR

+ defined for any numeric type

(integer and real)

new meaning :

scalar + matrix

matrix + matrix

character string must denote

one of operators in language

+ and - permitted for unary

and binary operators

* and / permitted for binary

operators

< , > ¢ <= , >= can be
overloaded; result must

be type boolean

V.170

P . ey vm T s e e

1. -- use of MATRIX_OPS

declare

R - AR 6 A T T
POUSR

use MATRIX OPS;

e sl

% f A, B : MATRIX(1..10, 1..20);
i[c : MATRIX(11..30, 1..30);
i D, E : MATRIX(1..10, 1..30);
' X, Y : FLOAT;

begin

R

assume initialization done here

A :=X +B ; -- first “+"
A := 3.5 +B ; -- first "+"
A := A +B ; -- second "+"
C =Y * C ; -= first "®"
D := -9.7 * E ; -- first "#"
‘ E :=A* C ; -- second **"
E:=D+ (A + B) * (5.25 * C) ;
A=A+ 1.0 ; -- error : there is no such
- *"+* operation

end; ~-- of example of usage

s

_J V. 180

< e tr et AT i, B P TN 70— WO~ P T = T - 1 Wk © Ty

function "+" (A : FLOAT; M : MATRIX) return MATRIX is 4
TEMP : MATRIX(M'FIRST(1l)..M'LAST(l) , M'FIRST(2)..M'LAST(2));

begin

for I in M'FIRST .. M'LAST loop
for J in M'FIRST(2) .. M'LAST(2) loop
TEMP(I,J) := A + M(I1,J);
end loop;
end loop;

return TEMP;

end "+";

St puany

m—

function "+" (A : FLOAT ; M : MATRIX) return
subtype ROWS is INTEGER range M'FIRST(1)
subtype COLS is INTEGER range M'FIRST(2)
TEMP : MATRIX(ROWS, COLS);
begin
for I in ROWS loop
for J in COLS loop
TEMP(I,J) := A + M(I,J);
end loop;
end loop;
return TEMP;

end "+";

MATRIX is
++« M'LAST(1);

.+« M'LAST(2);

enmaaiinad Sl il Nl b it St

S s s g T e

function "+" (A : FLOAT; M : MATRIX) return MATRIX is

Wi |

TEMP : MATRIX (M'FIRST(l) .. M'LAST(l),
M'FIRST(2) .. M'LAST(2)):

begin

end "+";

will return TEMP; attributes taken from actual parameters

M'FIRST(1i) lower bound of i-th index

M'LAST (i) upper bound of i-th index

o

v.210

Object declaration

A&i

A H MATRIX ('5-.5' 1..20)

et peameit guman:

A A A A |

N |]

' Lo §

" A'FIRST(1)--' | | | |

] B ;«
o A'LAST(1)----~- v |
P
5 A'FIRST(2)-~-=m—- o
| A'LAST(2)—===mmceeeeue '

When the declaration "TEMP : ..." 1is elaborated, an object hav-

ing 11 rows and 20 columns will be created.

L V.220

1
|

A :=A + 1.0; -~ SYNTAX ERROR

ey

+ not defined for matrix

[P,

as first parameter and

scalar as second parameter

[SRS

could add

function "+" (M:MATRIX; A:FLOAT)
return MATRIX is

begin
return A + M;

end "+%;

to MATRIX_OPS

function "+" (M1, M2 : MATRIX) return MATRIX is

f TEMP : MATRIX(M1'FIRST..M1'LAST, M1'FIRST(2)..M1'LAST(2));
IOFFSET, JOFFSET : INTEGER;

begin

IOFFSET := M2'FIRST(1) - M1'FIRST(1);
JOFFSET := M2'FIRST(2) - MI'FIRST(2):;

for I in M1'FIRST(1l) .. M1'LAST(l) loop
for J in M1'FIRST(2) .. M1'LAST(2) loop
TEMP(I,J) := M1(I,J) + M2(1 + IOFFSET, J + JOFFSET);
end loop;
end loop;

return TEMP;

end "+";

[V.240

function "+" (M1,M2:MATRIX) return MATRIX is

lane BN

@ omran g
» 1

TEMP : MATRIX (M1'FIRST..M1'LAST,
M1'FIRST(2).,.M1'LAST(2));

indices of returned matrix

taken from left operand

1
{
i
1
]
4

Object declarations -

S,T : MATRIX (l1..4,1..6);

U H MATRIX (-3- 00'100015);

S + Tand S + U return a
4%x6 matrix with indices

l..4 x 1..6

U + S returns a 4x6 matrix

V. 250

s BN

discrete range for loops taken from first operand

]
. '
wn

+ U for I in 1..4 loop
for J in 1..6 loop

. for J in 10..15 loop

RSP

B e B o e

OFFSET
Consider Uu+ s
------- + JOFFSET --—---=-
|]
| |
U-30000100015 + 51004'1006
| |
| |
-------- + IOFFSET --------
1OFFSET := M2'FIRST(1l) - M1'FIRST(1)

= 1 - (-3) ‘

JOFFSET := M2'FIRST(2)

M1'FIRST(2)

= 1 - 10

'.
|
.
|
|

function "*" (A : FLOAT; M : MATRIX) return MATRIX is
TEMP : MATRIX(M'FIRST(l)..M'LAST(1), M'FIRST(2)..M'LAST(2)):
begin
for I in M'FIRST(l) .. M'LAST(1) loop
for J in M'FIRST(2) .. M'LAST(2) loop
TEMP(I,J) := A * M(I1,J);
end loop;
end loop;
return TEMP;

end "“*" ,

function "*" (M1, M2 :

TEMP :
OFFSET :

i begin
for I in MI'FIRST(1)
TEMP(I,J)
TEMP(I,J)
end loop;
end loop;
end loop;

return TEMP;

end "*";

MATRIX(M1'FIRST(1l) ..M1'LAST(1l), M2'FIRST(2)..M2'LAST(2));
constant INTEGER := M2'FIRST(1l)

i. for J in M2'FIRST(2)
s= 0,.0;

for K in M1'FIRST(2)
:= TEMP(I,J) + M1(I,K) * M2(K + OFFSET, J);

MATRIX) return MATRIX is

- M1'FIRST(2);

+«« MI'LAST(1l) loop
.o M2'LAST(2) loop

«e« MI'LAST(2) loop

V.290

|

h -

r;riiszg‘v*' ~
i

MATRIX MULTIPLICATION

Pnxn X Bnxp ==> Cmxp
Product of two matrices is
defined only when number of
columns in first matrix is
equal to the number of rows

in the second.

N

°i3 =) ik ¥ bkj

k=

V.300

T o g A e

function "*" (M1,M2 : MATRIX) return MATRIX is

TEMP: MATRIX (M1'FIRST(1l)..M1'LAST(1),
M2'FIRST(2) . .M2'LAST(2));

Object declarations -

S : MATRIX (1..4,1..6) ;

T : MATRIX (l1..6,1..2)

U : MATRIX (1.08’1004) H

* T returns a 4x2 matrix
with indices 1l..4 x 1..2

* S returns a 8x6 matrix
with indices 1..8 X 1..6

* S is undefined

v.310

b ORI Y . F. . }
il i s ittt T Btk s il e o " FPWSET TN R I Ry - SO

EXCEPTIONS

E | subprogram_specification | is
| | |
|
o
| declarative_part |
| |
begin k
T | :
| sequence_of_ | 4
| statements | ;
| | ¢
exception \
|
|
1 I \ optional :
| exception | /
| handTer | |
| | | ‘
|
/
end;

" | V. 330

s s et

Exception handler defines action to be taken when specific excep-

tions are raised.

declare
begin
exception

end;

procedure
begin
exception

end;

EOTIpT R T

] Form of exception handler

when exception choices =>

sequence_of_statements

exception_choices

exception_name

others -- must appear last

Example :

excegtiog

when OBJECT_ERROR =>

PUT (“...");

when OVERFLOW | UNDERFLOW =>

PUT ("...");

when others =>

PUT ("...");

function "+" (M1,M2 : MATRIX)

return MATRIX is

defined only if M1 and M2
have same number of rows

and same number of columns

function "*" (M1,M2 : MATRIX)

return MATRIX is

defined only if nunber of columns
of M1 is equal to number of

rows of M2

V.360

it

S SRR S DR

vy

A

® ~
:

[SF- o)

~

package MATRIX_OPS is

type MATRIX is array (INTEGER range <>, INTEGER range <>)
of FLOAT;

SIZE_ERROR : exception;
function "+" (A : FLOAT; M : MATRIX) return MATRIX;

function "+"™ (M1, M2 : MATRIX) return MATRIX;
-- may raise exception SIZE ERROR if Ml and M2
-- are not the same size ‘

function "*® (A : FLOAT; M : MATRIX) return MATRIX;

function "*" (M1, M2 : MATRIX) return MATRIX;
-- may raise exception SIZE ERROR if the number
-- of columns of M1l is not equal to the number
-- of rows of M2

end MATRIX_OPS;

~

package body MATRIX OPS is
.
function "a" (A : FLOAT; M : MATRIX) return MATRIX is

TEMPg: MATRIX(M'first(l)..M'LAST(l) , M'FIRST(2)..M'LAST(2));

begin

for I in M'FIRST .. M'LAST loop
for J in M'FIRST(2) .. M'LAST(2) loop

o TEM2(I,J) := A + M(I,J);
end loop;
end loop;

return TEMP;

end "+";

V.370

Smmem
[

function "+" (M1, M2 : MATRIX) return MATRIX is

-- may raise exception SIZE_ERROR

TEMP : MATRIX(M1'FIRST..M1'LAST, M1'FIRST(2)..M1°'LAST(2));
IOFFSET, JOFFSET : INTEGER;

begin

if M1'LENGTH(1) /= M2'LENGTH(l) or
M1'LENGTH(2) /= M2'LENGTH(2) then
raise SIZE ERROR;

end if; -

IOFFSET := M2'FIRST(1) - M1'FIRST(1l);
JOFFSET := M2'FIRST(2) - M1'FIRST(2);

for I in MI'FIRST(1) .. M1'LAST(l) loop

for J in M1'FIRST(2) .. M1'LAST(2) loop
TEMP(I,J) := M1(I,J) + M2(I + IOFFSET, J + JOFFSET);

end loop;
end loop;

return TEMP;

end "+";

function "*" (A : FLOAT; M : MATRIX) return MATRIX is

TEMP : MATRIX(M'FIRST(1l)..M'LAST(1), M'FIRST(2)..M'LAST(2));

begin

for I in M'FIRST(1) .. M'LAST(l) loop
for J in M'FIRST(2) .. M'LAST(2) loop
TEMP(1,J) := A * M(I,J);
end loop;
end loop;

return TEMP;

end "*" ;

V.380

O Y P ——T

B e e — a Ny . Ao,

(e B]

[
e \

function "*" (M1, M2 : MATRIX) return MATRIX is

-- may raise exception SIZE_ERROR

TEMP : MATRIX(M1'FIRST(l)..M1'LAST(l), M2'FIRST(2)..M2'LAST(2));

‘ OFFSET : constant INTEGER := M2'FIRST(1l) - MI'FIRST(2);
begin

if MI'LENGTH(2) /= M2'LENGTH(1l) then
raise SIZE_ERROR;
end if;

for I in M1'FIRST(1) .. MI'LAST(l) loop
for J in M2'FIRST(2) .. M2'LAST(2) loop
TEMP(I,J) := 0.0;
for K in M1'FIRST(2) .. M1'LAST(2) loop

TEMP(I,J) := TEMP(I,J) + M1(I,K) * M2(K + OFFSET, J):

end loop;
end loop;
end loop;
return TEMP;

endg "*";

end MATRIX_OPS;

PRI T RO s pym s = e T PO, -

I Exceptions Raised by Packages

package MATRIX_OPS is

i type MATRIX is array (INTEGER range <>, INTEGER <>) of FLOAT;

SIZE_ERROR : exception;

function "+" (A : FLOAT; M : MATRIX) return MATRIX;

function “+" (M1, M2 : MATRIX) return MATRIX;
-- may raise exception SIZE ERROR if Ml and M2
-- are not the same size -

function "*" (A : FLOAT; M : MATRIX) return MATRIX;
function "*" (M1, M2 : MATRIX) return MATRIX;
-- may raise exception SIZE ERROR if the number

-- of columns of M1l is not equal to the number
-- of rows of M2 |

end MATRIX_OPS;

{
1
1
[

v e oy v

USER DEFINED EXCEPTIONS

Exception declaration
identifiet_list : exception;

SIZE_ERROR : excegtion;

Raise statement
raise exception_name;

raise SIZE_ERROR;

Example

package MATRIX_OPS is

SIZE_ERROR : exception;

end MATRIX OPS;

package body MATRIX_OPS is

function "** (M1,M2 : MATRIX)
return MATRIX is

begin
if M1'LENGTH(2) /= M2'LENGTH(1)
raise SIZE_ERROR;
end if;

end "*";

end MATRIX_OPS;

then

F:.:_:_.._ s “w
l ‘

Handling Exceptions

declare

use MATRIX_OPS;

A,B : MATRIX (1..10,1..20);

begin

C := A * B; -- causes SIZE_ERROR
E := see ¢

: end;

This block does not have local
handler. Should SIZE_ERROR be

raised, it will be propogated

to enclosing unit.

V.430

Handling Exceptions

When exception is raised and
propogated to unit with local :
handler execution of handler]
replaces execution of remainder }
of unit.

[Yo
’ '

[TSRO
. .

Handler "acts"™ as substitute for
corresponding unit.

. handler has access to
parameters A

. handler can issue a
return

If no handler exists for exception,
program will terminatel

Handling Exceptions

procedure P is

ERROR : exception;

begin
raise ERROR; -~ This exception is handled
-- by E1l
exception

when ERROR => ,.. ; =~ handler El

ey
. s

Handling Exceptions

procedure P is

ERROR : exception;

procedure Q is
begin

LI] v

raise ERROR;
-~ This exception is handled by E2,

oo 0

exception

-- After execution of the handler, Q returns

-- normally, unless the handler executes a

-- raise statement.

-- Execution of "raise;" would propogate

-~ ERROR out to P, where it would be handled by El.
end Q;

begin

Q;

exception

when ERROR => ...; =- handler El

end P;

V.460

— o ibdie saintmctu. o

procedure P

Handling Exceptions

is

ERROR : exception;

procedure R is
begin
raise ERROR;

-- Since there are no handlers in R, its execution
-- will be terminated and the exception will be

end R;

procedure
begin
R; -

exception

when ERROR => ...;

propogated to the calling subprogram.

Qis

An ERROR exception raised by this call to
R is handled by handler E2.

-- handler E2

end Q;
begin
Q;
R; =- An ERROR exception raised by this call to
<~~~ R is handled by handler El.

exception

when ERROR => ...;

end f;

-~- handler El

| -

ok ittt LA o S A

S T T T T T e

Exceptions in Example III

procedure GET_VALID RECORD (REC : out ITEM_RECORD;
END_OF_DATA : out BOOLEAN) is
S : RECORD_STRING; I
LENGTH_ERROR : BOOLEAN;

begin
loop
GET_NEXT_RECORD (S ., LENGTH_ERROR):
if LENGTH ERROR or else not VALID RECORD then
WRITE ERROR (S); -
else -
REC := CONVERT (S);
exit;
end if;
end loop;

-- exit from loop only occurs when good record found
-- or when an END_ERROR exception occurs in
-- GET NEXT RECORD
END OF DATA := FALSE;
exception™
when END ERROR => END OF DATA := TRUE;
end GET_VALTID_RECORD; -

GET_VALID_RECORD calls GET_NEXT_RECORD

GET_NEXT_RECORD calls GET

GET is a procedure defined in the standard package TEXT_ IO and
END_ERROR is an exception defined in that package which can

result from a call to GET.

Since there is no handler in GET_NEXT_RECORD, that procedure
terminates and the exception is propogated on to
GET_VALID RECORD, where it is "handled™ by the exception handler

shown above.

NOTE : A normal return from GET_VALID RECORD follows.

V.480

i A |

Exceptions in Example III

Suppose we want to terminate the loop in PROCESS_RECORDS using an

exception when no more records are available. The following

redefinition of RECORD_HANDLER would be appropriate.

package RECORD_HANDLER is

type ITEM_RECORD is

record
ITEM_CODE : record
PREFIX : STRING(l..2);
NUMBER : range 0..9999;
SUFFIX : CHARACTER;
end;

DESCRIPTION : STRING(l..30);
QUANTITY : range 0..999999;
end ITEM_RECORD
procedure OPEN FILES;
procedure CLOSE_FILES;
procedure GET_VALID RECORD (REC : out ITEM_RECORD) ;

NO_MORE_RECORDS : exception;
-~ This exception is raised by GET_VALID RECORD
-- when the end of the input file 1Is encountered.
procedure WRITE_BECORD (REC : in ITEM_RECORD) ;

end RECORD_HANDLER;

i = B s

P
. '

i

Exceptions in Example III

PROCESS_RECORDS could depend on the exception

NO_MORE_RECORDS:

with RECORD_HANDLER;
procedure PROCESS_RECORDS is
use RECORD_HANDLER;
ITEM : ITEM_RECORD; -- defined in RECORD_HANDLER
begin
OPEN_FILES;
loop
GET_VALID_RECORD (ITEM,NO_MORE RECORDS);
WRITE_RECORD (ITEM);
end loop;
exception
when NO_MORE_RECORDS => CLOSE_FILES;

end PROCESS_RECORDS;

V.500

T L A A o A it oy

v Rt TN R PO

AN s 0 an A

Exceptions in Example III

The body of GET_VALID RECORD changes slightly.

procedure GET_VALID RECORD (REC : out ITEM RECORD) is
S : RECORD STRING; -
LENGTH_ERROR : BOOLEAN;
begin
loop
GET_NEXT_RECORD (S , LENGTH_ERROR);
if LENGTH_ERROR or else not” VALID_RECORD then
WRITE_ERROR (S);
else
REC := CONVERT (S);
exit;
end if;

end loop;
~- exit from loop only occurs when good record found

~- or when an END ERROR exception occurs in
~-- GET_NEXT_RECORD

exception
when END ERROR => raise NO MORE_RECORDS;

end GET VALID_RECORD;

The END_ERROR exception is handled, as before,
but the handler raises the new NO_MORE_RECORDS
exception defined in the specification part of

this package.

9
-
P g vty -th

g .

———

i

A S o

1 |

I 1
1 z SUMMARY ,
| . ;

b

v Overloading é

§ Exceptions :

L Packages and Exceptions

o I

[
" .

T T

EXAMPLE VI

LIST PROCESSING

V1.100

L
L Py
)

TN eI T

e

i DR

e o e b et 7 AR 12 S £ e A W i e T WS

Lane BN |

B oommcnrt [o)
. . .

OBJECTIVES

Access Types

b Data Abstraction ’
Generics

Discriminants

variant Records

I
|

' Vi.1l10 ! j
T ————— |

List Processing

-- The following is an example of a list processing package,
-- making use of access types for dynamic allocation of list nodes.

package SORTED_LIST is
type LIST is private;

type PRIORITY TYPE is new NATURAL; -- derived type

procedure CREATE (HEADER : out LIST);

procedure INSERT (HEADER : in out LIST;
INFO : INFO _TYPE;
PRIORITY : PRIORITY_ TYPE);

procedure NEXT_ENTRY (HEADER : in out LIST;
INFO : out INFO TYPE;

PRIORITY : out PRIORITY_ TYPE);

EMPTY LIST : exception; —- can be raised by NEXT_ENTRY

private

type NODE; -=- incomplete type declaration
type LIST is access NODE;
type NODE is
record
PREVIOUS : LIST;
PRIORITY : PRIORITY TYPE;
INFO : access INFO TYPE;
NEXT : LIST;
end;

end SORTED_LIST

-- The procedures in this package maintain a list

-- of items, sorted by priority (increasing). The procedure

== CREATE must be called each time a new list
-- is desired. During the execution of a program

-- any number of lists may exist. A call to NEXT ENTRY

-- returns the info and priority for the first item
-- and removes this entry from the list.

L BN

S

—

package body SORTED_LIST is

procedure CREATE (READER : out LIST) is
begin -- Build a dummy node to represent an empty list
HEADER := new NODE (PRIORITY => 1, INFO => null,
PREVIOUS => null, NEXT => null);
HEADER. PREVIOUS := HEADER; HEADER.NEXT := HEADER;

end CREATE;

procedure INSERT (HEADER : in out LIST;
INFO : INFO TYPE;
PRIORITY : PRIORITY TYPE) is
PTR : LIST; -
begin
PTR := HEADER.NEXT;
while PTR /= HEADER and
PRIORITY <= PTR.PRIORITY loop
PTR := PTR.NEXT;
end loop; .
--PTR now references the record which will follow
--the new record in the list.
PTR. PREVIOUS.NEXT := new NODE (PTR.PREVIOUS, PRIORITY,
new INFO TYPE (INFO), PTR);
PTR.PREVIOUS := PTR.PREVIOUS.NEXT; -
end INSERT;

procedure NEXT_ENTRY (HEADER : in out LIST;
INFO : out INFO TYPE;
PRIORITY : out PRIORITY TYPE) is
FIRST : LIST := HEADER.NEXT; -
begin
if FIRST = HEADER then
raise EMPTY_LIST;
end if;
PRIORITY := FIRST.PRIORITY;
INFO := FIRST.INFO.all;
FIRST := FIRST.NEXT;
HEADER.NEXT := FIRST;
FIRST.PREVIOUS := HEADER;
end NEXT_ENTRY;

end SORTED_LIST;

V1.130

. am o A i

e

e

t~~t pay g

[ow—
y)

Flllllliiir-

INTRODUCTION TO ACCESS TYPES

(LINKED LISTS) :

T—e{ ALL "'-l_‘l BuUT “-z? THE [l

FIRST /
LAST
type NODE; - incompleté type declaration;

type NODE_PTR is access NODE;

type NODE is
record

WORD : STRING(l..3);

NEXT : NODE_PTR;

end record;

Object declaration:

FIRST, LAST : NODE_PTR;

VI.140 :

i

.

FIRST := new NODE (fALL',null);

FIRST

FIRST.WORD = “ALL"
FIRST.NEXT = null

FIRST.NEXT := new NODE
{ WORD => "BUT",
NEXT => null);

~ Jeur

FIRST.NEXT.WORD = "BUT"

LAST := new NODE (NEXT => null, WORD => "THE");

v—-L:__- ALL "““'7.__.[3“1‘

nall

FIRST

FIRST.NEXT.NEXT :=

LAST;

TRE

null

-l ALL *-'z_..[Bu'r

it e T JEDRICUP N
T m——— - L eemme bt s e e aer L am e DO oA

{
, [f
! !
| §~,
4
E I To print the WORD fields of the records (assume zero or &
15 more nodes): i
I declare
: T : NODE_PTR := FIRST;
1 3
L begin
E ‘ | while T /= null loop
N PUT (T.WORD);
NEW_LINE; _ ;
T := T,NEXT;
end loop;
end;
'1 3
1
!
§
[VIi.170

. ottt s -

IEERT AR S s e

by NN BB

=1

[
-

B b

PDOUBLY LINKED LIST

/

/

HEADER

i Y 13) mepetmns B4 -1 1

Maintain a list of items sorted by priority (decreasing)

PROCEDURES :
CREATE
INSERT
NEXT_ENTRY

VI1.180

B ar

ond e NS

[= W)
> 4

B

[SUveu—)
.

| | |
| PREVIOUS | PRIORITY | INFO
! !

NEXT

type

INFO_TYPE i8 ... ;
type PRIORITY_TYPE is oo
type NODE;
type LIST is access NODE;
type NODE is
record
PREVIOUS : LIST;
PRIORITY : PRIORITY_TYPE;
INFO ¢ access INFQ_TYPE;
NEXT : LIST;

end record;

type LIST is access NODE;

PRIVATE TYPE

package SORTED_LIST is
type LIST is private;
procedure CREATE (...); visible
procedure INSERT (...); part
procedure NEXT_ENTRY (...);
EMPTY_LIST : exception;

private
type NODE;
type LIST is access NODE;

type NODE is

record private
part

end record;

~end SORTED LIST;

Name of type and operations specified in visible part are
available. .
Names of fields are not visible.

V1.200

procedure CREATE

(HEADER : out LIST) is

begin
HEADER := new LIST
(PRIORITY => 1,

INFO => null,
PREVIOUS => null,
NEXT => null);

HEADER. PREVIOUS := HEADER;

HEADER.NEXT := HEADER;

end CREATE;

h—

HEADER

e

PRoceEpure ILwseer

L gan sraaemmee o i@ T
HEADER
—1 [s]; 311+

INFoO

PRIORITY =S

BEFORE

HEADER

coo b ? 5 J > 3 ‘ ‘p-—-.:-.

& b D

INFoO
PRIORTTYES

AF TER

VI.215

LSS SN S T Ay P it

; procedure INSERT (HEADER : in out LIST;
! INFO : INFO TYPE;
' . ' PRIORITY : PRIORITY_TYPE) is

1 PTR : LIST;

begin
PTR := HEADER.NEXT;

while PTR /= HEADER and 1
PRIORITY <= PTR.PRIORITY loop :
PTR := PTR.NEXT;
end loop;

-=-PTR now references the record which will follow
--the new record in the list.

PTR. PREVIOUS.NEXT := new NODE (PTR.PREVIOUS, PRIORITY,
new INFO_TYPE (INFO), PTR);

PTR. PREVIOUS := PTR,PREVIOUS.NEXT;

| end INSERT;

E VI.220

Peei et OEE

[
' !

procedure INSERT (...) is ...
begin
PTR := HEADER.NEXT;

while PTR /= HEADER and
PRIORITY <= PTR.PRIORITY loop

PTR := PTR.NEXT;

end loop:;

upon exit from loop:

PTR

=

hﬁ

VI.230

/ | PTR

F - |3

L o S

new LIST (PTR.PREVIOUS,

PRIORITY,

new INFO TYPE(INFO),
PTR)

PTR
Rs-Nank —~ Tz] ="
ey |
~15{1] -
&

ii\ V1.240

.. m——— *oo.

e =TE sS—=L BN

PTR. PREVIOUS.NEXT := new LIST(...);

PTR

L . e
@
L o

PTR.PREVIOUS := PTR.PREVIOUS.NEXT;

PTR

=Ll

I

L
i

L
]_ | VI.250 .

INSERT at end of list

PTR

PTR /= HEADER is true

PRIORITY <= PTR.PRIORITY is true

- il j.__f g "D
HEADER g jj
/
| PTR

PTR /= HEADER is false

loop terminates

s

V1. 260

!: -——gl¢j—_—:*8

HEAOER

;

PTR

PTR.PREVIOUS.NEXT := new LIST(...);

“‘F_'—_"..

— |¢;]_—:‘..8

' HEADER

el

PTR

PTR. PREVIOUS := PTR.PREVIOUS,NEXT;

INSERT first item

HEAOER f

PTR

loop terminates immediately with

PTR = HEADER

e |

L]9 | &l

HEADER k]
| /
PTR

PTR. PREVIOUS.NEXT t= new LIST (o . c) ;

PTR.PREVIOUS := PTR.PREVIOUS.NEXT;

|

J

FIRST

PRIORITY := FIRST.PRIORITY :

]

|

1
[— g.l¢—L:_"
L

I

l

|

|

|

INFO := FIRST.INFO.all;

~—y I

V1. 290

A Ina W oty

/.
Ve

FIRST
FIRST := FIRST.NEXT;

1

el T—L le|1| T—1L T~

L~ N

HEADER.NEXT := F IRST;

G

_ l¢°"/:?1“\‘7“’_.6'1
v '

V4

7

FIRST

f (1] =121 P—1|s&
_’HEADERC : - j{

FIRST VI1.300

& o
.

yA

FIRST

V4
FIRST
N FIRST := PIRST.NEXT; i
-
' G
. }
h | {@ 1 S11
neaoer (') '
4
; FIRST
E HEADER.NEXT := FIRST;
ps 54 L1 I 1 511
HEADER ' !
7
V4
FEIRST
FIRST.PREVIOUS := HEADER;
' qp ’,/4’————~———;--::::::I-. <;.{
HEacER y
ya
/

v1.300

-~ The following is an example of how SORTED_LIST might be used.
-- The package is declzcred inside of this procedure so that use
-- may be made of a local definition of INFO_TYPE.

procedure PRINT_HANDLER;

type INFO_TYPE is
record

end record;

package SORTED_LIST |is
-- specification part as defined previously,
-- using INFO TYPE as just declared

end SORTED_LIST;-

use SORTED_LIST;
PRINT QUEUE : LIST;

PRIORITY : PRIORITY TYPE;
DESCRIPTOR : INFO_TYPE;

package body SORTED_LIST is
-- as defined previously
end SORTED_LIST;
begin -~ body of PRINT_HANDLER:
CREATE (PRINT_QUEUE);

-- assume some value has been given to DESCRIPTOR
INSERT (PRINT_QUEUE, DESCRIPTOR, 2);

NEXT_ENTRY (PRINT_QUEUE, DESCRIPTOR, PRIORITY);

end PRINT_HANDLER;

Example VI
Version 2
Introduction to Generics r

-- A more general list processing package definition is now
presented, making use of the generic definition feature.
-- Since the package does not depend on the details of INFO TYPE, 1
-~ it is now supplied as a generic parameter of the package’ ’

gineric
type INFO TYPE is private;

package SORTED_LIST is
type LIST is private;
type PRIORITY TYPE is new NATURAL; -~ derived type

procedure CREATE (HEADER : out LIST);

procedure INSERT (HEADER : in out LIST;
INFO : INFO_TYPE;
PRIORITY : PRIORITY~TYPE);

procedure NEXT_ENTRY (HEADER : in out LIST;
INFO : out INFO TYPE;

PRIORITY : out BRIORITY_?YPE);
EMPTY LIST : exception; -- can be raised by NEXT_ENTRY
private

type NODE;
type LIST is access NODE;
type NODE is
record
PREVIOUS : LIST;
PRIORITY : PRIORITY TYPE;
INFO : access INFO TYPE;
NEXT : LIST; -
end record;

end SORTED_LIST

& e
. 1

gt

I

The procedures in this package maintain a list

of items, sorted by priority (increasing). The procedure
CREATE must be called each time a new list

is desired. During the execution of a program

any number of lists may exist. A call to NEXT_ENTRY
returns the info and priority for the first item

and removes this entry from the list.

package body SORTED_LIST is

procedure CREATE (HEADER : out LIST) is
begin -~ Build a dummy node to represent an empty list
HEADER := new NODE (PRIORITY => 1, INFO => null,
PREVIOUS => null, NEXT => null);
HEADER.PREVIOUS := HEADER; HEADER.NEXT := HEADER;

end CREATE;

procedure INSERT (HEADER : in out LIST;
INFO : INFO_TYPE;
PRIORITY : PRIORITY TYPE) is
PTR : LIST; -
begin
PTR := HEADER.NEXT
while PTR /= HEADER and
PRIORITY <= PTR.PRIORITY loop
PTR := PTR.NEXT;
end loop;
--PTR now references the record which will follow
--the new record in the list.
PTR.PREVIQUS.NEXT := new NODE (PTR.PREVIOUS, PRIORITY,
new INFO TYPE (INFO), PTR);
PTR. PREVIOUS := PTR.PREVIOUS.NEXT; -
end INSERT;

procedure NEXT_ENTRY (HEADER : in out LIST;
INFO : out INFO_TYPE;
PRIORITY : out PRIORITX_TYPE) is
FIRST : LIST := HEADER.NEXT;
begin
if FIRST = HEADER then
raise EMPTY LIST;
end if; -
PRIORITY := FIRST.PRIORITY;
INFO := FIRST.INFO.all;
FIRST := FIRST.NEXT;
HEADER.NEXT := FIRST;
FIRST.PREVIOUS := HEADER;
end NEXT_ENTRY;

end SORTED_LIST;

VI.330

A <

N e ot AT 1 - e i g I S 1 Wi

*Models" of program units.
Can be parameterized:

Generic instantiation creates a copy (instance) of a
generic prooram unit which can be used directly as

ordinary program units.

A generic subprogram:

generic
type ELEMENT is private;
procedure EXCHANGE (X,Y : in out ELEMENT) is
TEMP : constant ELEMENT := X;
begin
X = Y¥Y;
Y := TEMP;
end SWAP;

2
! ' GENERIC PROGRAM UNITS
.
H
]
|
|

] Declarations with generic instantiation:

‘! procedure SWAP_INT is new EXCHANGE (INTEGER);
procedure SWAP CHAR is new EXCHANGE (ELEMENT => CHARACTER);

Overloading a procedure name:

procedure SWAP is new EXCHANGE (INTEGER);
procedure SWAP is new EXCHANGE (CHARACTER);

[VI.340

-- The package SORTED LIST may now be treated as a library package,
with a particular type being supplied for INFO TYPE when an
instance of the generic package is created. PRINT_HANDLER

-- is now reconsidered using this new approach.

with SORTED_LIST;
procedure PRINT HANDLER is

type PRINT_DESCRIPTOR is
record

end;

package PRINT LIST is
new SORTED_LIST (INFO_TYPE => PRINT_DESCRIPTOR);

use PRINT_LIST;

PRINT_QUEUE : LIST;
PRIORITY : PRIORITY_TYPE;
DESCRIPTOR : PRINT DESCRIPTOR;

begin -~ body of PRINT_HANDLER:

CREATE (PRINT_QUEUE);

-- assume some value has been given to DESCRIPTOR
INSERT (PRINT_QUEUE, DESCRIPTOR, 2);

h NEXT _ENTRY (PRINT_QUEUE, DESCRIPTOR, PRIORITY);

end PRINT_HANDLER;

e
.

[VI.350

Definition of generic package:

generic
type INFO TYPE is private;
package SORTEQ_LIST is

end SORTED_LIST

Instantiation of generic package:

with SORTED LIST;
procedure PRINT_DESCRIPTOR is
type PRINT DESCRIPTOR is
record

LN 2

end record;

package PRINT LIST is
new SORTED_LIST (INFO_TYPE => PRINT DESCRIPTOR);

end PRINT DESCRIPTOR;

1 1] | |

| Tl R S

A
!
{
'
{
[
|
|

o ———

an object of type
PRINT_DESCRIPTOR

VIT™NO

GENERIC INSTANTIATION

The instantiation "brings into existance" the procedures
PRINT_LIST.CREATE (eeo)3
PRINT LIST.INSERT (...);
and
PRINT LIST.NEXT _ENTRY (...)3
which perform operations on a doubly linked 1list in

which one component of each node is a pointer (access type)
to a record to type PRINT_DESCRIPTOR.

-- Instantiation

package L is
new SORTED_LIST (T)

-~ Procedure call

L.INSERT(...)

will insert a record into the 1list in which one component
is a pointer to an object of type T

VIi.370

E——

Rl S

OTHER GENERIC PARAMETER FORMS

type identifier is (<>); -~ denotes any discrete type
generic

- type T is (O);
function NEXT IN CYCLE (X : T) return T is
begin - T
if X = T'LAST then
return T'FIRST
else
return T'SUCC(X)
end {£;
end NEXT_IN CYCLE;

type DIRECTION is (NORTH, EAST,SOUTH,WEST);

type WEEKDAY is (MON, TUES, WED, THUR, PFRI);

function TURN RIGHT is new NEXT_IN CYCLE (DIRECTION);

function NEXT WEEKDAY is new NEXT_IN_CYCLE (WEEKDAY);

TURN_RIGHT(EAST) = SOUTH

TURN_RIGHT(WEST) = NORTH

NEXT_WEEKDAY(TUES) = WED

NEXT_WEEKDAY(FRI) = MON

V1. 380

DISCRIMINANTS

Provides a form of "dynamic™ parameterization; value of
discriminant need not be known at translation time.

Object of record_type with discriminant may be a
constrained object or an unconstrained object (dynamic
allocation).

Discriminant may be used
(a) as a bound of an index constraint
(b) to specify a discriminant value
in a discriminant specification
(c) as a discriminant name of a variant
part

Discriminant must be a discrete type

V1.390

]

[ISV

O g
. .

DISCRIMINANTS

Example:
HAX_MBSSAGE_SIZB ¢ NATURAL := 1000;

type BUFFER_TYPE (SIZE : INTEGER range |
=xpe - 0..MA&_HE§§§CE_SIZE) is ’

record i
ADDRESS : . . . H ‘
MESSAGE : STRING (1..SIZE);

end record;

Constrained Object

IN_ BUFF : BUFFER_TYPE (500);

I ! | !
| 500 | | |
I | | |

IN_BUFF.SIZE IN BUFF.ADDRESS IN BUFF,MESSAGE (1..500)

OUT_BUFF : BUFFER_TYPE(SIZE => 25);

| 25 |
| |

OUT_BUFF.SIZE OUT _BUFF.ADDRESS OUT_BUFF.MESSAGE(1..25)

1 l ‘71 1
|

VI.‘OO !

Lo s R, s i,

Unconstrained Object

declare

e ey N

[RS
M .

A_BUFFER : BUFFER_TYPE; == discriminant omitted

DESTINATION: . . .;
FULL_LINE : STRING (1..HA&_HESSAGE_SIZB);

[——")
. .

‘z ACTUAL_LENGTH : NATURAL := 0;

begin

GET_MESSAGE(DESTINATION, FULL_LINE, ACTUAL_LENGTH);

A_BUFFER := (ACTUAL_LENGTH, DESTINATION,
FULL_LINE(l..ACTUAL LENGTH));

end;

-

If GET_MESSAGE returns a value of 475 as the value of ACTUAL_LENGTH,

the effect of the assignment statement is to create the record

| |

475 | value of | value of FULL LINE(l..475)
| DESTINATION :
|

——

A R am e e e

[VI.410

VARIANT RECORDS

T e SR R

T 1 T T |

| ~==]r===d] ecmea- | =———- > null |

) | | i

| | | !

POINTER] RECTANGLE = ‘ LINE {

| |

. | | | |

l oes | | sen l

| | | |

,. | | | |

:] 2.5 | | 4.8 |

. | | | |
4) |
, | s.0 |
| |

s
S ot §
. v

: A list of records, each of which have certain objects in
1_ common. The remaining components depend on the value of
some other component which is called the "discriminant®.

*-

S
.

1L v Vi.420

I e e e 1r o ——————— . <

VARIANT PART

variant part specifies alternative record components. Each
variant defines the components which exist for a specific
value of the discriminant. !

DISCRIMINANT:

Special component of records. ;
Discriminant must be a discrete type. :

Provides a form of “"dynamic" parameterization; value
of discriminant need not be known at translation time.

5.0

| | | |
| RECTANGLE | discriminant { LINE]
	—emmee- -~—	
cee	fixed part	cee
	meme——- ———	
	i	
2.5	variant part	4.8

| |

| |

R
l type record_type (discriminant : discriminant_type) is

record ?

- object declaration(s) ;
T - fixed part
i . - (§ptiona1)

case discriminant is
when choice => component_list;

when choice => component_list;
end case;

end record;

! Each wvalue of the discriminant must be represented once and

only once in the set of choices.

VI.440

type COORDINATES is]

record
X, Y : FLOAT;
end record;

t~ o= SER

type DEGREES is new FLOAT;
derived type; differentiate from
' == length measurements

.-
|

type SHAPE_TYPE is (SQUARE, RECTANGLE, LINE, ARC, CIRCLE);

type FIGURE (SHAPE : SHAPE_TYPE) is

record

BT 2 -

COLOR

(RED, GREEN, BLUE);

LINE_STYLE : (SOLID_LINE, DOTTED_LINE);

POSITION COORDINATES ;

ANGLE DEGREES;

case SHAPE is

when SQUARE => SIZE : FLOAT;
when RECTANGLE => HEIGHT, WIDTH : FLOAT;
when LINE => LENGTH : FLOAT;
when ARC => RADIUS : FLOAT;
| ARC_LENGTH : DEGREES;
'f : | when CIRCLE => DIAMETER : FLOAT;
end case;
end record;
!
L.
L
[VI.450

RECORD AGGREGATES

Using positional notation:

(RECTANGLE, RED, SOLID_LINE, (1.5, 3.4), 45.0, 2.5, 5.0)

discriminant must appear first

Using named components

(COLOR => RED, LINE_STYLE => SOLID_LINE,
POSITION => (1.5, 3.4),
ANGLE => 45.0, SHAPE => RECTANGLE,
HEIGHT => 2.5, WIDTH => 5.0)

A v o 0 e

An Application

4

1‘ ' type ITEM;

type POINTER is access ITEM;

type ITEM is
record
NEXT_ITEM : POINTER;
COMPONENT : FIGURE;
end record;

PICTURE : POINTER;

| PICTURE := new ITEM (null, (RECTANGLE, ... , 2.5, 5.0));

PICTURE.NEXT_ITEM := new ITEM (null, (LINE, ... , 4.8));

‘]] 1] 1 |
I R e | ==—-- > null |
| | | | | |
| | | i
PICTURE | RECTANGLE | | LINE |
e		e
2.5		4.8
5.0		
[
[.
PICTURE,.COMPONENT.SHAPE = RECTANGLE -- reference
!_ PICTURE.COMPONENT. HEIGHT := 3.5; -- assignment
: PICTURE.COMPONENT.DIAMETER -=- {llegal reference
L PICTURE.COMPONENT.SHAPE := CIRCLE -- {llegal assignment

I V1.470

SUMMARY

Access Types

Data Abstraction

Generics

Discriminants

Variant Records

Vi.480

! %

VII.100

L amann] [-
» ' . i

PR
. .

i EXAMPLE VII

Fundamentals of Tasking

[P

[N

OBJECTIVES

Task Concepts

Lo BN |

A Fault Warning Procedure

[Tee

procedure ANNOUNCE FAULT (FAULT_CODE : INTEGER) is

task RING_WARNING_BELL;
| task FLASH RED_LIGHT;

task PRINT_MESSAGE;

task body RING_WARNING_BELL is

end RING_WARNING BELL;

task body FLASH_RED_LIGHT is

end FLASH_RED_LIGHT; ‘

task body PRINT_MESSAGE is

e s 0

end PRINT_MESSAGE;

begin -~ body of procedure

-- wait for tasks to do their work
-~ order of execution is unimportant

end ANNOUNCE FAULT;

ViI.120

function SUM_ARRAYS (A,B : FLOAT_ARRAY)
return FLOAT

___________ € dewormwmcce=
| |
| !
ISUM_a| IsuM_B|
| | | |
B T
........... d) dommmmeme e
|
|
] return

|
| SUM_OF A + SUM OF B |
I _ I

SUM OF_A = A(A'FIRST) +...+ A(A'LAST)

SUM_OF B = B(B'FIRST) +...+ B(B'LAST)

Tasks SUM_A and SUM_B can be processed in parallel.
They are independent processes.
Each involves simple sequential processes.

No inter~process communication and no sharing of data.

ViI.1l30

function SUM_ARRAYS (A, B : FLOAT_ARRAY) return FLOAT is
-- This is an example of tasks which can run in parallel
- -- because they do not interact.
1 SUM OF A, SUM OF B : FLOAT := 0.0;
. begin ~ ~ - -

I‘ declare -- a block to contain the tasks %
task SUM A; -- simplest possible task declaration

l task SUM_B; -- another, to run in parallel

} task body SUM A is -- corresponds to a package body
! begin
for I in A'FIRST .. A'LAST loop
i SUM_OF_A := SUM_OF A + A(I);
i end loop;
end SUM A;

task body SUM B is
begin -
for I in B'FIRST .. B'LAST loop
SUM_OF B := SUM_OF B + B(l);
end loop; -

end SUM B;
begin -- body of block
null;

i : ~- This block will not terminate until both tasks terminate
s ~- because they are declared in the block.
end;

return SUM_OF_A + SUM_OF_B;
end SUM_ARRAYS;

PRSI,
N .

}' ~-- This example can be generalized to involve any number of arrays
-~ and tasks, with one task being declared for each array.

[
. 1

VII.140

L
L
[
I

function SUM ARRAYS (A,B : FLOAT ARRAY)
return FLUAT is -

SUM_OF_A, SUM_OF B : FLOAT := 0.0;
begin
declare
eees =~ task declarations
see == task bodies
begin
-- empty body (of block)
end

return SUM_OF A + SUM_OF_B;
end SUM_ARRAYS;

Elaboration of the task bodies causes their initiation.

Only when tasks declared within block terminate will the
block terminate.

‘Vv11.150

Task Specification

& ey Em

task [type]l identifier

s Pt

I‘ is entry - declaration \
entry - declaration |
- entry declaration |
}' end identifier /
i A single‘task can be declared by a task specification, as
! has been done in this example,
| or
A task txge can be declared, allowing any number of
variables of that type to be created.
‘, Task types allow the inclusion of tasks in any data struc-

ture and dynamic creation of tasks using access types which
reference tasks.

B0 AT] AN ML 1525 s ALt 2R ‘ ko i
—

PR

l VIii.160 é

Example of Task Types

task type RESOURCE is
entry SEI1ZE;
entry RELEASE;

end RESOURCE;

.
-

*

SINGLE : RESOURCE;
POOL : array (1..10) of RESOURCE.

SINGLE.SEIZE
POOL (K) .RELEASE

o BN

L ——]
y

EXAMPLE VIII

TASK INTERACTIONS

ORI URIPUINP SR

E‘ VIII.100

PP

[—
L SRR ¥ 3 .

OBJECTIVES

Entries

Accept Statements

Rendezvous

Task Attributes

Select Statements

VIII.1l1l0

[———

s

Example VIII
Version 1
Task Interactions

-- An example of cooperating tasks running in parallel.

BLOCK LENGTH : constant INTEGER := 100;
type BLOCK is array (1..BLOCK_LENGTH) of INTEGER;

task PRODUCE_BLOCK;
-- A task which produces blocks of data items from any source.
-- Each block is BLOCK_LENGTH data items long.

task CONSUME_ITEM;
--— A task which processes data one item at a time.
-- Structure of data blocks is unimportant to this task.

task BLOCK TO_ITEM is

-~ A task to allow PRODUCE_BLOCK to feed CONSUME_ITEM.
entry SEND BLOCK (B : in BLOCK);
-- A call to SEND BLOCK is accepted first.
entry GET_ITEM (ITEM : out INTEGER);

-- 100 (BLOCK_LENGTH) calls to GET_ITEM are then accepted
-~ before looping back to the accept for SEND BLOCK.

end BLOCK TO_ITEM;

VIII.1l20

puan

{

[

[Oe———1
.

"

task body BLOCK_TO_ITEM is
BUFFER : BLOCK;
begin
loop -- forever
accept SEND BLOCK (B : in BLOCK) do
BUFFER := B;
end SEND BLOCK;
for I in~1..BLOCK_LENGTH loop
accept GET ITEM (ITEM : out INTEGER) do
ITEM := BUFFER(I);
end GET_ITEM;
end loop;
end loop;

end BLOCK_TO_ITEM;

- oy — - —— - - - - - - -

task body PRODUCE BLOCK is
MY BLOCK : BLOCK;

begin™
loop
-- £fill MY BLOCK from somewhere
BLOCK_TO_ITEM.SEND_BLOCK (MY_BLOCK);
end loop;

end PRODUCE_BLOCK;

- ——— - - D - - -

task body CONSUME_ITEM is
NEXT_ITEM : INTEGER;

begin
loop
BLOCK TO_ITEM.GET_ITEM (NEXT_ITEM);

-- consume NEXT_ITEM

end loop;

end CONSUME_ITEM;

VIII.130

" _‘A...«_‘,_wmm,@“m_’mmj

task BLOCK_TO_ITEM is

-~ task specification
-- contains entry declarations only

end BLOCK_TO_ITEM;

task body BLOCK_TO_ITEM is

-- declarative part
begin
-- sequence of statements

end BLOCK_TO_ITEM;

VIII.140 i

task body PRODUCE_BLOCK is

oo == fill MY BLOCK from somewhere

J
: BLOCK TO_ITEM.SEND_BLOCK(MY BLOCK); -- entry call

end PRODUCE_BLOCK;

task body BLOCK_TO_ITEM is

accept SEND BLOCK(B : in BLOCK) do
BUFFER := B
end SEND BLOCK;

end BLOCK_TO_ITEM;

VIIL.I15%0

_...____.._—_—._—-——-—-—-——————.—_—.—.—-—-——-—————-——1

1
[

\ /
1 |
| £i11 MY_BLOCK |
| €from somewhere |
| |
| |
I T
| |
\ v
1 ! T]
| BLOCK TO_ITEM. | | |
| SEND_BLOCK | l accept SEND_BLOCK i
| (MY BLOCK) | | (B : in BLOCK)]
| | | |
I | | |
|
|
\ /
1 I
f RENDEZVOUS |
|)
| BUFFER := B |
| executed i
| |
I |
|
|
|
)
\
VIII.160
e ——— _ . - o . .

Poi) Dumy

ENTRY DECLARATION
and
ENTRY CALL

s

o o 2
By

ENTRY declaration

Similar to a procedure declaration in syntax

Can be declared only in a task specification

ENTRY call

Same syntax as subprogram calls f

FRpe—

0 ——

L VIII.170

st

§
|

ACCEPT STATEMENT

1» accept entry name

L i formal_part (optional)

do sequence of statements end (optional)

formal part

analogous to subprogram formal part;
specifies parameters, their modes and types

do sequence_of_ statements end

when rendezvous occurs (entry has been called and
accept statement is reached) sequence_of statements

is executed

VIII.180

i task body BLOCK_TO_ITEM is
) BUFFER : BLOCK;
beginh
loop -- forever
accept SEND_BLOCK (B : in BLOCK) do {{=======
BUFFER := B;
end SEND_BLOCK;
for I in 1..BLOCK_LENGTH loop
accept GET ITEM (ITEM : out INTEGER) do
ITEM := BUFFER(I); {
end GET_ITEM;
end loop;
end loop;
end BLOCK_TO_ITEM;

s 2

task body PRODUCE_BLOCK is
MY BLOCK : BLOCK;
begin
loop
-- fill MY BLOCK from somewhere

. {{=======

BLOCK_TO_ITEM.SEND BLOCK (MY BLOCK);

end loop;
end PRODUCE BLOCK;

task body CONSUME ITEM is
NEXT ITEM : INTEGER;
begin ~
loop
BLOCK_TO_ITEM.GET ITEM (NEXT_ITEM); {(==z=z===
-- Ccohsume NEXT_ITEM

end loop;
end CONSUME _ITEM;

1 VIII.190

ot o o, o A iy BV, W .l Rt BB

A AR 7 s Mt SRS

o B

task body BLOCK_TO_ITEM is

BUFFER :
begin
loop -~ forever
accept SEND BLOCK (B :
BUFFER := B;
end SEND BLOCK;
for I in"1..BLOCK_LENGTH loop
accept GET_ITEM (ITEM : out INTEGER) do
: ITEM := BUFFER(I);
4 end GET_ITEM;
) end loop;
end loop;
end BLOCK_TO_ITEM;

BLOCK;

Somrimined
» t

in BLOCK) do

PO
.

task body PRODUCE_BLOCK is
MY BLOCK : BLOCK;
begin~
loop
-- fill MY BLOCK from somewhere

BLOCK.TO_ITEM.SBNQ_BLOCK (MY_BLOCK) ;
end loop;
end PRODUCE BLOCK;

- . . - T e D e G5 P W P D T WD S S S D wh e

task body CONSUME_ITEM is
NEXT ITEM : INTEGER;
begin
loop
BLOCK TO ITEM.GET ITEM (NEXT_ITEM);
-- consume NEXT ITEM

end loop;
end CONSUME_ITEM;

® ——y Dm————
. ’

{{emsz=x==

VIII.200

e g

BUFFER : BLOCK;
begin
loop -- forever
accept SEND_BLOCK (B : in BLOCK) do
BUFFER := B;
i end SEND_BLOCK;
N for I in 1..BLOCK_LENGTH loop
B accept GET_ITEM (ITEM : out INTEGER) do <({====z====
; ITEM := BUFFER(I);
end GET_ITEM;
: end loop;
L end loop;
' end BLOCK TO_ITEM;

l task body BLOCK TO_ITEM is

task body PRODUCE_BLOCK is
MY BLOCK : BLOCK;
begin™
loop
-- £ill MY BLOCK from somewhere

- {{=======

BLOCK_TO_ITEM,.SEND_BLOCK (MY _BLOCK);
end loop;
end PRODUCE_BLOCK;

task body CONSUME ITEM is
NEXT_ITEM : INTEGER;
begin
loop
BLOCK TO_ITEM.GET ITEM (NEXT_ITEM); {{=======
-~ consume NEXT_ITEM -

end loop;
end CONSUME_ITEM;

i
, I VII1.210

=1 oy

task body BLOCK_TO_ITEM is
BUFFER : BLOCK;
. . begin
T | loop -- forever
| B accept SEND BLOCK (B : in BLOCK) do ‘
BUFFER := B;
end SEND_BLOCK; !
! for I in 1..BLOCK_LENGTH loop i
accept GET ITEM (ITEM : out INTEGER) do <<{===a=== !
ITEM := BUFFER(I); :
end GET_ITEM; |
end loop;
end loop;
end BLOCK TO_ITEM;

- - - - W S D - W D P e - -

task body PRODUCE_BLOCK is
. MY BLOCK : BLOCK;
begin™
loop .
-- fill MY BLOCK from somewhere

BLOCK_TO_ITEM.SEND_BLOCK (MY_BLOCK) ;
end loop; R
end PRODUCE_BLOCK;

task body CONSUME ITEM is
NEXT ITEM : INTEGER;
begin
loop
BLOCK TO ITEM.GET ITEM (NEXT_ITEM);
-- consume NEXT_ITEM

end loop;
end CONSUME_ITEM;

i I VII11.220

T

task body BLOCK_TO_ITEM is
BUFFER : BLOCK;
begin
loop -~ forever
accept SEND BLOCK (B : in BLOCK) do
BUFFER := B;
end SEND BLOCK; i
1 BRE for I in” 1..BLOCK_LENGTH loop :
accept GET ITEM (ITEM : out INTEGER) do <((==z===== '
ITEM := BUFFER(I);
end GET_ITEM;
end loop;
end loop;
end BLOCK_TO_ITEM;

A,.;,
praer e s

st g (QEED

Tt RO

e e Sty

task body PRODUCE_BLOCK is
MY BLOCK : BLOCK;
begin™ ‘
loop
-- fill MY BLOCK from somewhere

BLOCK_TO_ITEM.SEND BLOCK (MY _BLOCK); {{(===z=z===
end loop; 1
end PRODUCE_BLOCK; 5

- - - - - D - e — - - e —— - — - - -

task body CONSUME ITEM is
NEXT ITEM : INTEGER;
begin
loop
BLOCK_TO_ITEM.GET ITEM (NEXT ITEM); {{=======
-- consume NEXT_ITEM -

end loop;
end CONSUME_ITEM;

VIII.Z230

{ ey

[—— P
. 1 []

task body BLOCK_TO_ITEM is
BUFFER : BLOCK;
begin
loop -- forever
accept SEND BLOCK (B : in BLOCK) do
BUFFER := B;
end SEND_BLOCK;
for I in 1..BLOCK_LENGTH loop
accept GET_ITEM (ITEM : out INTEGER) do
ITEM := BUFFER(I);
end GET_ITEM;
end loop;
end loop;
end BLOCK_TO_ITEM;

task body PRODUCE_BLOCK is
MY BLOCK : BLOCK;
begin™
loop
-- £ill MY BLOCK from somewhere

BLOCK_TO_ITEM.SEND_BLOCK (MY BLOCK) ;
end loop; -
end PRODUCE_BLOCK:

task body CONSUME_ITEM is
NEXT ITEM : INTEGER;
bejin ~
loop
BLOCK TO ITEM.GET ITEM (NEXT ITEM);
-- consume NEXT_ITEM -

end loop;
end CONSUME_ITEM;

{{===

- =
=m=E===s

VIII.240

b

PHES s

VERSION 2 - STRUCTURE

- —y
. 1

-- An example of cooperating tasks running in parallel,
-- within a complete program

procedure MAIN;

: task BLOCK TO ITEM is ... ;
task PRODUCE_BLOCK;
task CONSUME_ITEM;

task body BLOCK_TO_ITEM is ...
i task body PRODUCE BLOCK is ...
task body CONSUME ITEM is ... ;

we W

! begin -- body of MAIN

loop
delay 15.0 * SECONDS;

exit when PRODUCE_BLOCK'TERMINATED
and CONSUME_ITEM'TERMINATED;
end loop;

abort BLOCK_TO_ITEM;

end MAIN;

VII1.250

Task Bodies

task body PRODUCE BLOCK is
MY BLOCK : BLOCK'
NO “MORE BLOCKS : BOOLEAN := FALSE;
begin™
loop
-- £ill MY BLOCK from somewhere

if NQ_MORE_BLOCKS THEN
-~ Call SEND BLOCK with some indication of end
-- of data, Tor example a block of negative values.
exit;

end if;

BLOCK_TO_ITEM.SEND_BLOCK (MY _BLOCK) ;

end loop;
end PRODUCE_BLOCK;

i

task body CONSUME_ITEM is
NEXT_ITEM : INTEGER;

begin
loop
BLOCK TO_ITEM.GET_ITEM (NEXT_ITEM);
exit when NEXT ITEM < 0;
-- consume NEXT_ITEM
.)
end loop;

end CONSUME_ITEM;

task body BLOCK_TO_ITEM is
BUFFER : BLOCK;
begin
loop ~-- forever
accept SEND BLOCK (B : in BLOCK) do
BUFFER := B;
end SEND BLOCK;
for 1 in"l..BLOCK LENGTH loop
accept GET ITEM (ITEM : out INTEGER) do

ITEM :="BUFFER(I);
end GET_ITEM;
end loop;
end loop;
end BLOCK_TO_ITEM;

VIII.260 ,

TASK AND ENTRY ATTRIBUTES

For a task T, the following attributes are defined:

T'TERMINATED of type BOOLEAN - {initially equal to FALSE
when a task is created and becomes TRUE when
the task terminates

T'STACK_SIZE inidicates the number of storage units
allocated for the task (an integer number)

T'PRIORITY of predefined type PRIORITY
Defined in package STANDARD:

subtype PRIORITY is INTEGER range implementation_defined;

PRIORITY is set by the optional appearance of
pragma PRIORITY (static_expression);
somewhere within a task specification.

If processor resources are shared, an eligible task
with the highest priority is executed.

The priority of a task is static.

For an entry E of Task T, the following attribute can be used
within the body of task T:

E'COUNT The number of entry calls presently queued

on the queue associated with entry E.
An integer number.

VIII.270

B f The DELAY Statement

. Suspends the task which executes it for at least the given ' 4
time interval.

delay simple_expression;

SECONDS is a predefined constant defined in STANDARD package
(implementation defined). It gives the number of
basic time units in one second.

'
4 i
S| .
:
§
i -
i 1

]
L ~ VIII.280

s i 1 s gyt v < netm—— .

The ABORT Statement

Example:

abort BLOCK_TO_ITEM;

Causes unconditional asynchronous termination of task(s).

If a task calling an entry is abnormally terminated, it is
removed from the entry queue; if the rendezvous is already
in progress, the calling task is terminated but the task
executing the accept statement is allowed to complete the

rendezvous normally.

If there are pending entry calls for the entries of a task
that is abnormally terminated, an exception TASKING_ERROR is
raised for each calling task at the point where it calls the
entry, including for a task presently engaged in a rendez-

vous, if any.

ABORT statements are almost never needed and should only be

used when no other feature can do a job.

VIII.290

Example VIII
Version 2

-- An example of cooperating tasks running in parallel,
-- within a complete program.

procedure MAIN;

BLOCK_LENGTH : constant INTEGER := 100;
type BLOCK is array (1..BLOCK_LENGTH) of INTEGER;

task PRODUCE_BLOCK;
-~ A task which produces blocks of data items from any source.
-- EBach block is BLOCK_LENGTH data items long.

task CONSUME_ITEM;
-- A task which processes data one item at a time.
-—- Structure of data blocks is unimportant to this task.

task BLOCK TO ITEM is {
-- A task to allow PRODUCE BLOCK to feed CONSUME ITEM.
entry SEND BLOCK (B : in BTLOCK); -
entry GET ITEM (ITEM : out INTEGER);

end BLOCK TO:ITEM; i

task body BLOCK_TO_ITEM is
BUFFER : BLOCK;
begin
loop -~ forever
accept SEND BLOCK (B : in BLOCK) do
BUFFER := B;
end SEND BLOCK;
for I in"1..BLOCK_LENGTH loop
accept GET_ITEM (ITEM : out I[NTEGER) do
ITEM := BUFFER(I);
end GET_ITEM;
end loop;
end loop;
end BLOCK_TO_ITEM;

3
x - ro — e " - g Do o — oy h,-ﬁJ

task body PRODUCE_BLOCK is
MY BLOCK : BLOCK;
No:MORE_BLOCKS : BOOLEAN := FALSE;
begin
loop
-- fill MY BLOCK from somewhere

. -- NO_MORE_BLOCKS may be changed in here

if NO_MORE BLOCKS THEN
--"Call SEND_BLOCK with some indication of end
-- of data, for example a block of negative values.
exit;

end if;

BLOCK_TO ITEM.SEND_BLOCK (MY BLOCK) ;

end loop; -
end PRODUCE_BLOCK;

task body CONSUME_ITEM is
NEXT ITEM : INTEGER;
begin
loop
BLOCK-TO_ITEM.GET_ITEM (NEXT ITEM);
exit when NEXT ITEM < 0; -
-- consume NEXT_ITEM

end loop;
end CONSUME_ITEM;

begin -- body of main

-- There is nothing to be done in this body, but it
-- will not terminate until all three tasks terminate.
-- However, BLOCK _TO_ITEM loops forever.

-- A possible solution is to wait for the other two:

loop
delay 15.0 * SECONDS;
exit when PRODUCE_BLOCK'TERMINATED
and CONSUME_ITEM'TERMINATED;
end loop;

abort BLOCK TO_ITEM;

end MAIN;

VIII.31O0

—— b bl ndsmiiiieniinindatadindic iiitatiisitatte itiiniati

1 VERSION 3 - STRUCTURE

-- An example of cooperating tasks running in parallel, I
-- within a complete program with improved termination. i

procedure MAIN; |

task BLOCK TO_ITEM is oo ;

n task body BLOCK_TO_ITEM is ... ;
begin -- body of MAIN

.; ' declare

task PRODUCE_BLOCK;
task CONSUME_ITEM;

task body PRODUCE BLOCK is ... ;
task body CONSUMB_ITEM is cee ;

begin -- body of block

null;

-- This block will terminate only after the two tasks
declared within it terminate. ©Each explicitly does
-- so, thus exit from this block is guaranteed and only
BLOCK_TO_ITEM will still be active at that time.

end;

- BLOCK_TO ITEM must now be terminated to enable the
-~ termination of this procedure.

abort BLOCK TO_ITEM;
end MAIN;

L VIII.320

Ty Srevet:e

Example VIII
Version 3

-- An example of cooperating tasks running in parallel,
~- within a complete program with improved termination.

procedure MAIN;

BLOCK LENGTH : constant INTEGER := 100;
type BLOCK is array (1..BLOCK_LENGTH) of INTEGER;

task BLOCK TO_ITEM is
-- A task to allow PRODUCE BLOCK to feed CONSUME ITEM.
entry SEND_BLOCK (B : in BLOCK);
entry GET_ITEM (ITEM : out INTEGER);

end BLOCK_TO_ITEM;

task body BLOCK TO_ITEM is
BUFFER : BLOCK;
begin
loop ~~- forever
accept SEND BLOCK (B : in BLOCK) do
BUFFER := B;
end SEND BLOCK;
for I in~1..BLOCK_LENGTH loop :
accept GET I1TEM (ITEM : out INTEGER)} do
ITEM := BUFFER(I);
end GET_ITEM;
end loop;
end loop;
end BLOCK_TO_ITEM;

begin ~~ body of MAIN

declare -- a block to declarp the other two tasks

task PRODUCE_BLOCK;
-~ A task which produces blocks of data items from any
-- source, Each block is BLOCK_LENGTH data items long.

task CONSUME_ITEM;
-- A task which processes data one item at a time.

-- Structure of data blocks is unimportant to this task.

]- VIII.330

task body PRODUCE BLOCK is
MY BLOCK : BLOCK,
NO—MORE BLOCKS : BOOLEAN := FALSE;
begin™
loop
-- £ill MY BLOCK from somewhere K

’q‘ _

if NO MORE BLOCKS THEN
--"Call"SEND BLOCK with some indication of end
-- of data, for example a block of negative values.
exit;

end if;

BLOCK TO ITEM. SEND BLOCK (MY BLOCK);

end loop;
end PRODUCE_BLOCK; !

PR S er— g

task body CONSUME_ITEM 1s
NEXT_ITEM : INTEGBR,~
begin
loop
BLOCK TO ITEM.GET ITBM (NEXT_ITEM) ;
exit when NEXT_ITEM < 0:
-=- consume NEXT_ITEM s

end loop;
end CONSUME_ITEM;

begin -- body of block

null;
-~ This block will terminate only after the two tasks
-~ declared within it terminate. Each explicitly does
-- so, thus exit from this block is guaranteed and onlyi
-- BLOCK_TO_ITEM will still be active at that time.

end;

-- BLOCK _TO_ITEM must now be terminated to enable the
-- terminatTon of this procedure.

!. abort BLOCK TO_ITEM;

i end MAIN;

L VIII.340

VERSION 4 - STRUCTURE

(same as VERSION 3)

-=- The previous example is now modified to allow

~-= BLOCK TO ITEM to buffer several blocks if PRODUCE_BLOCK

-- gets 3head of CONSUME_ITEM.
procedure MAIN;

BLOCK_LENGTH : ... ;
type BLOCK is ... ;

task BLOCK_TO ITEM is ... ;
task body BLOCK TO_ITEM ... ;

begin -- body of MAIN
declare

task PRODUCE_BLOCK;
task CONSUME_ITEM;

task body PRODUCE_BLOCK is oev 3
task body CONSUME_ITE is ... ;

begin -- body of block
end;
abort BLOCK_TO_ITEM;

end MAIN;

VIII.350

Use of a Block Buffer

BLOCK LENGTH : constant INTEGER := 100;
type BLOCK is array (1..BLOCK_LENGTH) of INTEGER;

BUFFER_SIZE : constant INTEGER := 10;
BUFFER : array (l..BUFFER_SIZE) of BLOCK;

IN_INDEX
|
I
\J
T ‘ TQtﬁ*iltiif*l**t**—l**titl | | l l
\ ‘ ‘i****'*****‘****il*t***' I ' I I
l ' |i****|it***l****t'*iii*l | l | l
3
|
I
OUT_INDEX

BLOCK_COUNT = 4

The filling (production) of blocks and the use
of items can be carried out in parallel.

Several blocks may be buffered.

(consumption)

VIII.360

R RTRERIRE EES ity Sceihiiadegttotntinilnonditming il i i

SELECT STATEMENT

Selective Wait

Y select

alternative_l

u') or alternative_2 \
5 e \
L) cee > zero or more times
. or alternative_n /
. else \
! > optional
o sequence_of_ statements /

end select;

Each alternative is composed of
l. (optional) "guard": when condition =>
'? 2. accept_statement

|- 3. (optional) sequence_of_statements

I VIII.370

ey s v

Selective Wait - Open Alternatives

- select
accept entry namel;
or accept entry name_2;

LI

or acce Et ent ry _name_ n;

end select;

! 0 Select one of the open alternatives (accept statements) if
a corresponding rendezvous is possible. An alternative
is "open"™ if there is no guard. Rendezvous is possible
when a corresponding entry call has been issued by
another task.

o When several alternative rendezvous are possible and/or
several open alternatives start with »n accept statement
for the same entry one of the alternatives will be
selected at random.

o If no alternative can be immediately selected, task waits
until alternative can be selected.

.- a

. ——

VIII.380

g Pt

o IR

j‘ Selective Wait - Use of Guards

select

when guard_1 =>
| accept entry_name_1;

or when guard_2 =>
accept entry name_2;

or accept entry_name_3;

end select;

An alternative with. a guard is open if the corresponding
condition is true.

VIII.390

.,_mﬂfm,,_,,,‘-.-.-g-.'.-llIﬂFIulDF!!!g:.llllIIIIIIIIIIII---"'1F“!

Body of BLOCK_TO_ITEM

task body BLOCK_TO_ITEM is ;

BUFFER_SIZE : constant INTEGER := 10;

BUFFER : array (1..BUFFER SIZE) of BLOCK;

BLOCK COUNT : INTEGER range 0 .. BUFFER_SIZE := 0; '
IN INDEX, OUT INDEX : INTEGER range 1 .. BUFFER _SIZE := 1; |
ITEM_INDEX : INTEGER range 1 .. BLOCK _LENGTH :="1;

b;gin
loop -~ forever

select !

when BLOCK_COUNT < BUFFER_SIZE =>

accept SEND BLOCK (B : in BLOCK) do
BUFFER(IN_INDEX) := B;
end SEND_BLOCK;
IN_INDEX := IN_INDEX mod BUFFER_SIZE + 1;
BLOCK_COUNT := BLOCK_COUNT + 1;
or when BLOCK COUNT > 0 =>
accept GET_ITEM (ITEM : out INTEGER) do
ITEM := BUFFER(OUT_INDEX, ITEM_INDEX);
end GET_ITEM;
ITEM_INDEX := ITEM_INDEX mod BLOCK _LENGTH + 1;
if ITEM_INDEX = 1 then
-~ a block has been consumed
OUT_INDEX := OUT_INDEX mod BUFFER_SIZE + 1;
BLOCK_COUNT := BLOCK_COUNT =~ 1;
end if;
end select;

end loop;
end BLOCK TO_ITEM;

VIII.400

Example VIII
Version 4

‘ -- The previous example is now modified to allow
. -- BLOCK TO_ITEM to buffer several blocks if PRODUCE_BLOCK
-- gets ahead of CONSUME_ITEM.

procedure MAIN is

BLOCK_LENGTH : constant INTEGER := 100;
type BLOCK is array (l..BLOCK_LENGTH) of INTEGER;

task BLOCK TO ITEM is
-- A task to allow PRODUCE BLOCK to feed CONSUME ITEM.
entry SEND BLOCK (B : in BLOCK);
entry GET TTEM (ITEM : out INTEGER);

end BLOCK_TO_ITEM;

task body BLOCK TO ITEM is
BUFFER SIZE : constant INTEGER := 10;
BUFFER : array (l..BUFFER SIZE) of BLOCK;
BLOCK_COUNT : INTEGER range 0 .. BUFFER_SIZE := 0;
IN_INDEX, OUT_INDEX : INTEGER range 1 .. BUFFER_SIZE :=
ITEM INDEX : INTEGER range 1 .. BLOCK LENGTH :="1;
begin -
loop =-- forever
select
when BLOCK COUNT < BUFFER SIZE =>
accept SEND BLOCK (B :~in BLOCK) do
BUFFER(IN_INDEX) := B;
end SEND BLOCK;
IN INDEX := IN INDEX mod BUFFER SIZE + 1;
BLOCK COUNT := BLOCK COUNT + 1;~
or when BLOCK COUNT > 0 =>"
accept GET ITEM (ITEM : out INTEGER) do
ITEM :="BUFFER(OUT_INDEX, ITEM_INDEX);
end GET ITEM; -
ITEM INDEX := ITEM INDEX mod BLOCK_LENGTH + 1;
if ITEM_INDEX = 1 then
-- a block has been consumed
OUT_INDEX := OUT_INDEX mod BUFFER_SIZE + 1;
BLOCK COUNT := BLOCK _COUNT - 1;
end if;
end select;
end loop;
end BLOCK TO_ITEM;

l VIII.41lo0

e e e

| MY BLOCK : BLOCK; »
: NO_MORE_BLOCKS : BOOLEAN := FALSE;

{ begin™

‘ loop

end PRODUCE_BLOCK;

task body CONSUME_ITEM is

begin -- body of MAIN |
declare -- a block to declare the other two tasks
. task PRODUCE BLOCK;

b
‘ ’ task CONSUME ITEM;

task body PRODUCE BLOCK is

-

~- A task which produces blocks of data items from any
~- source. Each block is BLOCK_LENGTH data items long.

~- A task which processes data one item at a time.
~- Structure of data blocks is unimportant to this task.

-- £ill MY BLOCK from somewhere

T A oA BRI

if NO MORE BLOCKS THEN
--"Call SEND BLOCK with some indication of end
-- of data, for example a block of negative values.
exit;
end if; ,
BLOCK TO ITEM.SEND BLOCK (MY BLOCK); ,
end loop; - -

NEXT ITEM : INTEGER;

begin

begin

[—
.

end;

B Ssraane s
¢)

loop
BLOCK TO ITEM.GET_ITEM (NEXT_ITEM);

exit when NEXT_ITEM < 0;
~= consume NEXT_ITEM

end loop;

end CONSUME_ITEM;

~=- body of block

null;

This block will terminate only after the two tasks
declared within it terminate. Each explicitly does
so, thus exit from this block is guaranteed and only
BLOCK_TO_ITEM will still be active at that time.

-- BLOCK TO ITEM must now be terminated to enable the

-- terminatTon of this procedure.

[abort
end MAIN

[

AU U o oo

BLOCK TO_ITEM;

-
’

VIiII.420

I

Selective Wait - Else Part

select
alternative_l;

or alternative_2;

or alternative_n;

else

sequence_of_ statements

end select;

0 Alternative selected as before.

o If no alternative can be immediately selected, the else
part is executed.

VII1.430

LN

T e

ey

Selective Wait - SELECT ERROR

select

guard_1 =>
accept entry name_l;

or guard_2 => '
accept entry name_2;

or guard_3 =>
accept entry name_3;

end select;

If all alternatives are closed (all guards are FALSE) then
the exception SELECT_ERROR is raised.

VIII.A440

Forms of Alternatives

ot

i when condition =>

accegt: entr y_name

S e e e et

D do sequence_of_statements end

sequence of statements

when condition =>
delay_statement

sequence_of_statements

when condition =>

terminate

An open alternative starting with a delay statement will be
selected if no other alternative has been selected before
the specified time interval has elapsed.

A selective wait can contain at most one terminate alter-
native. An open terminate alternative will be selected only
if the end of the program unit containing the task has been
reached and all other tasks depending on that program wunit
have either terminated or are waiting at a selective wait
with a terminate alternative,

e An alternative starting with a delay statement, a terminate
alternative and an else part are mutually exclusive.,

VIII.4S50 :

select

when guard_1l =>
entry name_1;

when guard_2 =>
entry name_2;

or
" when guard-3 => \
aelax expression-1 \ Both could
or / be open
delay expression-2; / .

end select:

only the one
with the
shortest time

interval is
selected.

VIII.460

4

BLOCK_TO_ITEM with Terminate Alternative

task body BLOCK TO_ITEM is

BUFFER SIZE

T constant INTEGER := 10;

BUFFER : array (1..BUFFER _SIZE) of BLOCK;

BLOCK COUNT

: INTEGER range 0 .. BUFFER _SIZE := 0;

IN INBEX, OUT_INDEX : INTEGER range 1 .. BUFFER SIZE := 1;

ITEM_INDEX :
begin

INTEGER range 1 .. BLOCK_LENGTH := 1;

loop =-- forever

select

when BLOCK COUNT < BUFFER _SIZE =>

acce

end
IN

ept SEND_BLOCK (B : in BLOCK) do
BUFFER(IN_INDEX) := B;

SEND_BLOCK;

INDEX := IN_INDEX mod BUFFER_SIZE + 1;

BLOCK _COUNT := BLOCK_COUNT + 1;~

or when BLOCK COUNT > 0 =>

ace

ept GET ITEM (ITEM : out INTEGER) do
ITEM := BUFFER(OUT INDEX, ITEM_INDEX);

end GET_ITEM;

ITEM INDEX := ITEM INDEX mod BLOCK LENGTH + 1;

if ITEM_INDEX = 1 then
-- a block has been consumed
OUT INDEX := OUT INDEX mod BUFFER SIZE + 1;
BLOCK COUNT := BLOCK COUNT - 1;

end if; ~

or terminate; ~- allows termination at end of block

end select;

end loop;

end BLOCK_TO_ITEM;

VIII.470

daininib ksl it - .) . o, . T)

With wuse of the version of BLOCK TO_ITEM just presented, we
can restructure our example as follows, completely eliminat-]
ing the use of abort. g

procedure MAIN;

ST

task BLOCK TO_ITEM is ... ;
task PRODUCE_BLOCK; _
task CONSUME_ITEM; o

task body BLOCK_TO_ITEM is ...
task body PRODUCE_BLOCK is ...
task body CONSUME_ITEM is ... ;

r
|
I VERSION 5 - STRUCTURE
[
i
I
|
|

begin -- body of MAIN
! null;
-~ await termination of tasks

end MAIN;

VIII.480

oany

SELECT STATEMENT

ey

Conditional Entry Calls

select

s

entry call

i sequence_of_ statements -- optional

else

!
i
]

b sequence_of_ statements

. end select;

this entry can be accepted immediately.

[O
. .

g
.

I

A conditional entry call issues an entry call if and only {f

VIII.490 i

Y

SELECT STATEMENT

Timed Entry Calls

select

entry call

5 sequence_of_statements -- optional

delay statement

sequence_of statements -- optional

[.

end select;

A timed entry call issues an entry call if and only if this
entry can be accepted within a given delay.

[VII1.500. "

B e s oo

EXCEPTIONS IN TASKS

If an exception is raised in the sequence of statements of a
task body that does not contain a handler for the exception,
the execution of the task is abandoned; that is, the task is
terminated. The exception is not propogated further.”™

Each task has an attribute named FAILURE which is an excep-
tion. Any task can raise the FAILURE exception in any task
which it can name (for example T) by the statement

raise T'FAILURE;

The exception FAILURE supersedes any other exception that is
not yet handled or that is received while handling FAILURE.
Within the body of a task type T (and only there) there may
be handlers for the exception T'FAILURE.

L VIII.S1O

SUMMARY

Task Concepts

Entries

Accept Statements

Rende zvous

Task Attributes

Select Statements

VIII.520

N i et it

L b

aiiahinie B e N e s IR

ey pum gmm

CASE STUDY I

Program Design Using Packages

CsI1.100

|
I
]

A TEXT FORMATTER

Default Operation
By default, output lines are filled and right jhstified
(by inserting extra spaces between words).
Line spacing is 1.
Right margin is set at column 60.

Page length is set at 66 with a four line margin

at the top and bottom of the page.
Leading spaces on a line cause a temporary indentation.

A blank line causes a break before it is transmitted to

the output. (A break terminates the current sutput

line in fill mode.)

- e .

COMMAND SUMMARY

I- command break? default function
; .bp yes begin page
i .br yes cause a break
f .ceé n yes n=1 center next n lines
E fi yes start filling 1
-;? . .in n no n=0 indent n spaces z
% s n no n=1 line spacing is n g
, .nf yes stop filling é
<Pl n no n=66 set page length to n 2
.rm n no n=60 set right margin to n
.Sp n yes n=1 space down n lines
.ti n yes n=0 temporary indent of n

A '.,' in column 1 is an indication of a command line.

Signs are »ptional on command parameters; the presence of a

sign indicates a that the new value is relative to the old.

CS8I.120

P

e e T

~——rna

frmnly Pumsiocany Smptmam y [e
. »

I
|

Main Program Design

grocedure FORMAT

Initialize
while more input is available loop
Get next line
if line is a command then
Process command
else
Process text
end if

end loop

Terminate

end FORMAT

CS1.130

.

Command Processing Design

grocedure COMMAND

begin
get parameter values (if any)
case command type is
when bp => break
space to end of page
when br => break

when ce => break

record number of lines to center
when fi => break
enter £fill mode

when in => set indent value

when l1ls => set line space

when nf => break

enter no fill mode

when pl => set page length

when rm

break

1]
v

when sp

space down n lines

when ti => break

set temp indent value
end case

end COMMAND

T T T AT T

Csl.140

Text Processing Design

; I. procedure TEXT ﬁ

begin
handle leading blanks

if line to be centered then
align text

put out line

elsif line is blank then *

put out line

elsif not in fill mode then
put out line
else -- handle word-by-word
loop
get a word

exit when no more words

put out word

end loop
end if
end TEXT

Cs1.150

1
?
1
5
]
]

I]

{

[

*

[S e——

[P,
v

[y
f

Collect subprograms which handle input and manipulate the input

buffer into a package, with the buffer hidden within the body.

package INPUT_HANDLER is

type COMMANDS is (BP,BR,CE,FI,IND,LS,NF,PL,
RM,SP,TI,UNKNOWN) ;

type SIGN_TYPE is (PLUS, MINUS, NONE, NO PARAM);

MAX WORD SIZE : constant INTEGER := 20; ~

subtype WORD_STRING is STRING (1 .. MAX_WORD_SIZE);

function READ LINE return BOOLEAN;
-~ Reads a line into an internal buffer; returns
-- FALSE when no more lines are available

-- Command-related functions
function IS COMMAND return BOOLEAN;
-- TRUE Tf line starts with a "."
function COMMAND TYPE return COMMANDS
procedure GET_VALUE (SIGN : out SIGN_TYPE;
VALUE : out INTEGER);
-- Reads parameters to commands, when present.

-- Text processing functions
procedure PROCESS BLANKS;

-- Handles lecding blanks
procedure CENTER;
function BLANK LINE return BOOLEAN;
procedure NEXT WORD (WORD : out WORD STRING;

- LENGTH : out INTEGER);

function LINE return STRING;

~- used to send a whole line to FORMATTER

~- after centering and leading blank removal.

end INPUT_HANDLER;

CS1.160

T P g g NPT

Collect subprograms which affect output into a single package.
Output buffer and some status variables will be protected within

the body of this package.

T e o0y T

package FORMATTER is

ooy oy) NN BEE

oo, a1 1. o+

procedure BREAK;

=t

procedure SPACE (N : NATURAL);

-~ Space down N lines or to end of page.

{

- procedure PUTLINE (LINE : STRING);

aard

-- Used in no-£fill mode
procedure PUTWORD (WORD : STRING);
-- Used in fill mode

end FORMATTER;

.
.

o = -

Cs1.170

4

L)
. ’

-

o P

Use a package to hold values used in several places

(like a COMMON block) .

package VALUES is

FILL : BOOLEAN := TRUE;
subtype VALUE_RANGE is
INTEGER range 0 .. INTEGER'LAST;

LINE_SPACING : VALUE_RANGE := 1;

INDENT_VALUE, TEMP_INDENT, CENTER_COUNT :

VALUE_RANGE := 0;
RIGHT_MARGIN : VALUE_RANGE := 60;

PAGE_LENGTH : VALUE_RANGE := 66;

end VALUES;

T cur

Implementation of FORMAT

with INPUT_HANDLER, VALUES, FORMATTER;
use INPUT_HANDLER, FORMATTER;
procedure FORMAT is
-- main program
procedure COMMAND is
-- on following slide
procedure TEXT is
-- after COMMAND
begin
-- Initialization done in declarations
while READ_LINE() loop
if IS_COMMAND() then
COMMAND;
else
TEXT;
end if;
end loop;
-- Termination
BREAK;
SPACE(VALUES. PAGE_LENGTH); -- skip to end of page

end FORMAT;

CS1.190

;
L

oy

1

Lot} [PS—
.) r

Within the procedure COMMAND, we will be changing some of the
variables in VALUES. The nature of these chang:s will depend on
the presence or absence of a sign on the parameter. Also,
parameters themselves are optional. The following procedure will
be used to uniformly handle the defaults and signs and with some

appropriate checking.

procedure SET (VAR : in out VALUE _RANGE; ~- one of the variables

VAL : VALUE_RANGE; -- from the command line
SIGN : SIGN TYPE; -- from the command line

DEFAULT : VALUE_RANGE := 0;

MIN : VALUE_RANGE := 0; -- used for checking

MAX : VALUE_RANGE := INTEGER'LAST) is
begin)
case SIGN is
when NO_PARAM => VAR := DEFAULT;
when PLUS => VAR := VAR + VAL;
when MINUS => VAR := VAR - VAL;
when NONE => VAR := VAL;
end case;
-- Check for illegal values
if VAR > MAX then
VAR := MAX;
elsif VAR < MIN then
VAR := MIN;
end if;
end SET;

Csi.200

e A

oy

e

B

v e

4

Implementation of COMMAND

(within FORMAT)

with INPUT_HANDLER, VALUES, FORMATTER;
use INPUT_HANDLER, FORMATTER;
procedure FORMAT is

procedure COMMAND is

subtype VALUE RANGE is VALUES.VALUE RANGE;
SIGN : SIGN_TYPE; -

VAL : VALUE RANGE;

SPACE COUNT : INTEGER := 0;

procedure SET

end SET;

begin -- body of COMMAND

GET_VALUE (SIGN, VAL):;
case COMMAND_TYPE() is
when BP => BREAK;
SPACE (VALUES.PAGE LENGTH);
when BR => BREAK; -
when CE => BREAK;
SET (VALUES.CENTER COUNT, VAL, SIGN, 1):
-- note use of defaults
when FI => BREAK;
VALUES.FILL := TRUE;
when IND=> SET (VALUES.INDENT VALUE, VAL, SIGN);
VALUES.TEMP~INDENT-:= VALUES. INDENT VALUE;
when LS => SET (VALUES.LINE SPACING, VAL, SIGN, 1, 1);
when NF => VALUES.FILL := FALSE;
when PL => SET (VALUES, PAGE_LENGTH, VAL, SIGN, 66, 1);
when RM => SET (VALUES.RIGHT_MARGIN, VAL, SIGN, 60, 1);
when SP => BREAK;
-- use SET to handle the sign and default
SET (SPACE COUNT, VAL, SIGN, 1);
SPACE (SPACE_COUNT);
when TI => BREAK;
SET (VALUES.TEMP INDENT, VAL, SIGN);
when UNKNOWN => null; ~-- ighore
end case;

end COMMAND;

end FORMAT;

€s1.210

N el G

B <.
@

-

——

~ Implementation of TEXT

|

!

!

(within FORMAT) f

with INPUT_HANDLER, VALUES, FORMATTER; i

i

use INPUT_HANDLER, FORMATTER;
procedure ;ORMAT is

procedure TEXT is

WORD : WORD_STRING;

LENGTH : INTEGER;
begin
PROCESS_BLANKS ;
if VALUES.CENTER_COUNT > 0 then
CENTER;
PUTLINE (LINE());
VALUES.CENTER_COUNT = VALUES.CENTER_COUNT -1;
elsif BLANK_LINE() or not VALUES.FILL then
PUTLINE(LINE());
else -- handle one word at a time
loop
NEXT_WORD (WORD, LENGTH) ;
exit when LENGTH = 0;
PUTWORD (WORD(l..LByGTH));
end loop;
end if; .
end TEXT;

LA AR 4

end FORMAT;

Cs1.220

o

| PV

[T

Outline of INPUT_HANDLER

package body INPUT_HANDLER is

MAX LINE_LENGTH : constant INTEGER := 150;
BUFFER : STRING (1l..MAX LINE LENGTH);
-- holds current input line
LENGTH, CURRENT : range 0..MAX LINE LENGTH;
-- LENGTH is length of current input line
== CURRENT points into BUFFER when it is being
~- used word-by-word in £ill mode.

function READ_LINE return BOOLEAN is

end READ_LINE;

function IS_COMMAND return BOOLEAN is

end IS COMMAND;

function COMMAND TYPE return COMMANDS is

end COMMAND TYPE;

procedure GET_VALUE (SIGN : out SIGN_TYPE;
VALUE : out INTEGER) is

end GET_VALUE;

procedure PROCESS_BLANKS is

end PROCESS_BLANKS;

procedure CENTER is

end CENTER;

function BLANK LINE return BOOLEAN is

end BLANK_LINE;

procedure NEXT_WORD (WORD : out WORD STRING;
LENGTH : out INTEGER) is

end NEXT_WORD;

function LINE retyrn STRING is

end LINE; T

end INPUT_HANDLER;

Cs1.230

oy ey

|
|

{
Design of GET_VALUE i

,L..a..‘. 1

procedure GET_VALUE (SIGN : cut SIGN_TYPE;

VALUE : out INTEGER) is

begin

skip over command

1 skip intervening blanks

set SIGN

do conversion on characters to get VALUE

ke end

L CSI. 240

ain

Implementation of GET_VALUE

(within INPUT_HANDLER)

package body INPUT_HANDLER is

MAX LINE _LENGTH : constant INTEGER := 150;
BUFFER : STRING (1l..MAX LINE LENGTH);
-- holds current input line
LENGTH, CURRENT : range 0..MAX LINE_ LENGTH;
-- LENGTH is length of current input line
~- CURRENT points into BUFFER when it is being
-- used word-by~-word in £ill mode.
procedure GET_VALUE (SIGN : out SIGN TYPE;
VALUE : out INTEGER) is
COL : range 1..MAX LINE_LENGTH;

function CONVERT (INDEX : INTEGER) return INTEGER is
~- converts a string of digits starting at INDEX in
~- BUFFER to an integer.

begin
~- Use the same technique as in RECORD_HANDLER.

v ‘

end CONVERT;

begin
-~ skip over command, three characters long
-- {(could be generalized to handle arbitrary length
-- by looking for a special command syntax)

COL := 4;

SKIP_BLANKS(COL); -- skips blanks and tabs ‘

if COL > LENGTH then
-- nothing left on line
SIGN := NO_PARAM;
VALUE := 0; -- should never be used, in this case
else
case BUFFER(COL) is
when '+' => SIGN := PLUS;
COL := COL + 1;
when '-' => SIGN := MINUS;
COL := COL + 1;
others => SIGN := NONE;
end case;
VALUE := CONVERT (COL):
~- CONVERT will convert a string of digits
-- starting at position COL to an INTEGER
end if;
end GET_VALUE;

b end INPUT_HANDLER; ;

: I €S1.250

l Implementation of INPUT_HANDLER

with VALUES, TEXT_I0, FORMATTER;
use VALUES, TEXT_IO, FORMATTER; -- FORMATTER needed for call to BREAK
package body INPUT_HANDLER is '

! MAX LINE LENGTH : constant INTEGER :
BUFFER : STRING (1..MAX_ LINE_LENGTH);
LENGTH, CURRENT : range 0..MAX_LINE LENGTH;

e N

150;

. function READ_LINE return BOOLEAN is
. begin
? 3 if END OF FILE(STANDARD INPUT) then
L return” FALSE; -
else
LENGTH := 0;
while not END OF_LINE loop
LENGTH := LENGTH + 1;
GET(BUFFER(LENGTH)) ;
end loop;
CURRENT := 1; -- used by NEXT_WORD
return TRUE;
end if;
end READ_LINE;

function IS COMMAND return BOOLEAN is
begin -

return BUFFER(1l) = '.';
end IS_COMMAND;

function COMMAND TYPE return COMMANDS is

FIRST : CHARACTER := BUFFER(2);

SECOND : CHARACTER := BUFFER(3);

C : COMMANDS;
begin

C := UNKNOWN;

case FIRST is

when 'b' => if SECOND = 'p' then C := BP;
elsif SECOND = 'r' then C := BR; end if;

when 'c*' => if SECOND = ‘e' then C := CE; end if;
when 'f' => if SECOND = 'i' then C := FI; end if;
when 'i' => if SECOND = 'n' then C := IND; end if;
when '1' => if SECOND = 's' then C := LS; end if;
when 'n' => if SECOND = 'f*' then C := NF; end if;
when 'p' => if SECOND = '1' then C := PL; end if;
when 'r' => if SECOND = "m' then C := RM; end if;
when 's' => if SECOND = 'p' then C := SP; end if;
when 't' => if SECOND = 'i' then C := TI; end if;
when others => null;

end case;

return C;

end COMMAND TYPE;

CSI1.260

f1
)
1
1
1
I

Implementation of INPUT_HANDLER
({Continued)

procedure SKIP BLANKS (I : in out INTEGER) is
-- Advances I until BUFFER(I) is not a blank or tab.

end SKIP_BLANKS;

procedure GET_VALUE (SIGN : out SIGN TYPE;
VALUE : out INTEGER) is

COL : range l..MAX LINE_LENGTH;

function CONVERT (INDEX : INTEGER) return INTEGER is
-- converts a string of digits starting at INDEX in
-- BUFFER to an integer.

begin
-- Use the same technique as in RECORD HANDLER.
~- Return 0 if no digits encountered. ~

end CONVERT;
begin
-- skip over command, three characters long
-- (could be generalized to handle arbitra:y length
-- by looking for a special command syntav)

COL := 4;

SKIP_BLANKS(COL); -- skips blanks and tabs

if COL > LENGTH then
-- nothing left on line
SIGN := NO PARAM;
VALUE := 0; -- should never be used, in this case
else
case BUFFER(CCL) is
when '+4+*' => SIGN := PLUS;
COL := COL + 1;
when '-' => SIGN := MINUS;
COL := COL + 1;
others => SIGN := NONE;
end case;
VALUE := CONVERT (COL);
-- CONVERT will convert a string of digits
-- starting at position COL te an INTEGER

end if;
end GBT_VALUE;

TR

Implementation of INPUT_HANDLER
({Continued)

procedure PROCESS BLANKS is
-- Remove leading blanks, incrementing temporary “indent
-- counter appropriately.
NUM BLANKS : range 0..MAX LINE LENGTH;
begin ~ - -
if BUFFER(l) /= ' ' then
return; -- This procedure is not relevant.
end if;
BREAK; =-- .ti causes a break
-- Find first non-blank;
NUM_BLANKS := 1;
while NUM BLANKS < LENGTH
and” then BUFFER(NUM BLANKS+l) = ' ' loop
NUM BLANKS := NUM_BLANKS + 1;
end loop;
-~ Process result
if NUM BLANKS = LENGTH then
LENGTH := 0; -- indication of a blank line
else
TEMP INDENT := NUM_BLANKS + INDENT | VALUE;
BUFFER(I..LENGTH-NUM B LANKS)
:= BUFFER(NUM BLANKS+1..LENGTH) ;
LENGTH := LENGTH - NUM BLANKS;
end if; -
end PROCESS_BLANKS;

procedure CENTER is

-- Centering is accomplished by manipulation of TEMP_INDENT.
NEW-VALUE : INTEGER;

begin
NEW _VALUE := (RIGHT MARGIN + TEMP_INDENT - LENGTH) / 2;
if NEW VALUE > 0 THEN

TEMP INDENT := NEW VALUE;

end if;” -

end CENTER;

function BLANK _LINE return BOOLEAN is
begin

return LENGTH = 0;
end BLANK_LINE;

function LINE return STRING is
begin

return BUFFER(1l..LENGTH);
end LINE;

CSI.280

Implementation of INPUT_HANDLER
(Continued)

procedure NEXT_WORD (WORD : out WORD STRING;
LENGTH : out INTEGER) is
-~ Uses the variable CURRENT. LENGTH will tell how many
-- characters in WORD are significant. Any string of
-- non-blank characters is a 'word'.

end NEXT_WORD;

end INPUT_HANDLER;

Cs1.290

I Outline of FORMATTER

package body FORMATTER is

HAX_LINB_LBNGTH : constant INTEGER := 132;
T MARGIN : constant INTEGER := {4;
BUFFER : STRING (1..MAX LINE LENGTH);
-- Current output line -
OUT PTR, OUT WORDS, LINE NUM : VALUE RANGE := 0; :
1 =- OUT_PTR points to Tast character in BUFFER h
. -- OUT WORDS is the number of words on this line
-- LINE_NUM is the current line number .

l_ procedure BREAK is

end BREAK;

procedure SPACE (N : NATURAL) is

end SPACE;

procedure PUTLINE (LINE : STRING) is
end.éﬁTLINE;
procedure PUTWORD (WORD : STRING) is
h ' end.éﬁTWORD;

end FORMATTER;

Implementation of FORMATTER ;

with VALUES, TEXT_I0;
use VALUES, TEXT 10;
package body FORMATTER is

MAX_LINE LENGTH : constant INTEGER := 132;

BUFFER : STRING (1..MAX LINE_LENGTH);

OUT PTR, OUT WORDS, LINE NUM : VALUE RANGE := 0;
MARGIN : conStant INTEGER := 4; -

BLANK : constant CHARACTER := ' !';

BOTTOM : constant INTEGER := PAGE_LENGTH - MARGIN;

function MIN (I, J : INTEGER) return INTEGER is
begin
if I < J then
return I;
else
return J;
end if;
end MIN;

procedure PUTLINE (LINE : STRING) is
-- Send LINE to the output file
BLANKS : constant STRING := (1..MAX LINE LENGTH => BLANK);
begin -
if LINE NUM = 0 or LINE_NUM > BOTTOM then
-- start a new page

NEW LINE (MARGIN); -- puts out blank lines
LINE_NUM := MARGIN + 1;
end if;

-~ put out leading blanks
PUT (BLANKS(l..TEMP INDENT));
TEMP_INDENT := INDENT VALUE;
-- write out the string LINE
PUT (LINE);
-- handle line spacing
NEW_LINE (MIN (LINE SPACING, BOTTOM-LINE_NUM+1l));
LINE NUM := LINE_NUM + LINE_SPACING;
-- check for end of page
if LINE NUM > BOTTOM then
NEW TINE (MARGIN);
-~ TINE_NUM is purposely not changed here
end if;
end PUTLINE;

[Y Sy
L]] v

(R

T

(Continued)

b
Implementation of FORMATTER E
|

-~ oy AN

procedure SPACE (N : NATURAL) is
-- skip N lines or to bottom of page
begin

if LINE NUM > BOTTOM then

-- spacing has no effect in this case
. return;
i end if;
- if LINE NUM = 0 then
NEW LINE (MARGIN):
: LINE_NUM ¢= MARGIN + 1;
i end if;
NEW_LINE (MIN (N, BOTTOM-LINE NUM+l1));

- LINE NUM := LINE_NUM + N; -
i ~- check for end of page
’ if LINE_NUM > BOTTOM then
. NEW LINE (MARGIN);
g end if7;
end SPACE;

Sep————
[)

»

procedure BREAK is
-- end current filled line
begin
if OUT PTR > 0 then
PUTEINE(BUFFER(I..OUT_PTR));
OUT_PTR := 0;
OUT_WORDS := 0;
end if;
end BREAK;

procedure PUTWORD (WORD : STRING) is

end PUTWORD;

j end FORMATTER;

[

GEY pumy gy

CS1.320

|
|

Sy e s ey E

[[S
. ' .

-

Design of PUTWORD

grocedure PUTWORD

begin

Compute current line length + word length

if new length > allowed line length then
-- Addition of blanks necessary to right-justify
Spread out words in buffer to fill line
Break -- to flush out the line

end if

Copy ;ord to output buffer

Adjust state variables

end PUTWORD;

Cs1.330

Pow

Design of SPREAD

grocedure SPREAD

-- the number of blanks to add will be passed as a parameter

begin
Switch direction flag

-~ add blanks from opposite ends on alternate lines
Compute number of holes -- spaces between words
loop from end to beginning of words in buffer

copy a character to next available slot

if character is a blank then

insert appropriate number of extra blanks
-- based on number of holes
end if
end SPREAD

CS1.340

Implementation of PUTWORD

(within FORMATTER)

package body FORMATTER is

HAX_LINE_LBNGTH : constant INTEGER := 132;
MARGIN : constant INTEGER := 4;
BUFFER : STRING (1..MAX_LINF LENGTH) ;
-- Current output line
OUT PTR, OUT WORDS, LINE NUM : VALUE RANGE := 0;
=- ouT_PTR points to Tast character in BUFFER
-- OUT_WORDS is the number of words on this line
~-- LINE_NUM is the current line number

procedure PUTWORD (WORD : STRING) is

LAST, LINE SIZE : VALUE RANGE;
. begin - -

LINE SIZE := RIGHT MARGIN - TEMP INDENT;

if oUT PTR + WORD'LENGTH > LINE_SIZE then

-~ Kddition of blanks necessary to right-justify
SPREAD (LINE SIZE - OUT_PTR + 1);
; -- "+ 1" because BUFFER(OUT_PTR) is a blank
i if OUT_WORDS > 1 then
P OUT PTR := LINE SIZE; -- the effect of SPREAD
end if7 -
? BREAK;
‘ end if;
-~ Copy WORD and a blank to output buffer
LAST := OUT PTR + WORD'LENGTH + 1;
‘ BUFFER(OUT_PTR+1..LAST) := WORD & BLANK;
‘ : -~ Adjust state variables

C OUT PTR := LAST;
‘ OUT_WORDS := OUT_WORDS + 1;
L. end PUTWORD;

) LI]

end FORMATTER;

CsI1.350

Implememtation of SPREAD

(within PUTWORD)

package body FORMATTER is

i =y SN N

MAX LINE LENGTH : constant INTEGER := 132; . i
MARGIN : constant INTEGER := 4; i
BUFFER : STRING (1..MAX LINE LENGTH),
-- Current output line
OUT PTR, OUT WORDS, LINE NUM : VALUE RANGE := 0;
=- ouT PTR points to Tast character in BUFFER
- OUT WORDS is the number of words on this line
- LINE_NUM is the current line number
; ADD FROM RIGHT : BOOLEAN := TRUE;
. -- must be at the package body level; used by SPREAD to

-- insert blanks at opposite ends of alternate lines

1=

0

procedure PUTWORD (WORD : STRING) is

; procedure SPREAD (NUM_BLANKS : VALUE_RANGB) is

: I, J, NUM_HOLES, ADD_COUNT : VALUE_RANGE;
NUM_EXTRA : VALUE_RANGE = NUM_BLANKS;

begin
if OUT_WORDS <= 1 then
return; -- nowhere to put blanks
end if;

i ADD_FROM_RIGHT := not ADD FROM_RIGHT;
: -= add"blanks from oppoSite ends on alternate lines
NUM_HOLES := OUT _WORDS - 1;
I := OUT PTR - 17 -- points to last non-blank char
} J := 1 + NUM EXTRA;
while I < J Toop
. BUFFER(J) := BUFFER(I);
| if BUFFER(J) = BLANK then

.- if ADD FROM_RIGHT then
. ADD _COUNT := (NUM_EXTRA - 1) / NUM_HOLES + 1;
i else
!. ADD COUNT := NUM_EXTRA / NUM_HOLES;
end if;

NUM_EXTRA := NUM_EXTRA - ADD_COUNT;
NUM_HOLES = NUM_HOLES -1;
for K in 1..ADD COUNT loop

P Prmveivmnd
L] . .

J :=J - 1;
BUFFER(J) := BLANK;
end loop;
end if;

end loop;
end SPREAD;
end PUTWORD;

end FORMATTER;

| B S

CSI1.360

[

CASE STUDY Il

TELEPHONE SWITCHING SIMULATION

Cs11.100

o
—4
~—4
-
[o]
0 w
o 3]
c
o
£
Q,
o
—
o
&
o
&
7N
7 ~N
E 7 ~
a
1]
o
o
ol
D s & o
A
3]
o e a e e o
—
m
e
o)
o o - — —_
0 o @
> Z a .« e
[43] - QO
Az — — —
L
x
M OUVUmnnNOx
Ut
m IR B 0 el ol bl bed b e e et e e 4 g

Network Operation

Each 1line handler monitors its associated telephone lines for
such events as digits being transmitted and the receiver being
lifted from or returned to the hook. When these events occur,
the line handler notifies the call processor. Upon command from
the call processor, it also controls ringing. The line hanldlers
are used (rather than a single central processor) in order to
distribute the real-time demands of line monitoring.

The call processor is driven by messages from the 1line. handlers
concerning 1line events. It translates phone numbers to physical
line addresses and controls the connection and disconnection of
circuits.

This simulation will only be concerned with the transmission of
control signals among the various components of the network and
the interpretaion of these signals. Data could be collected to
determine the adequacy of the components and the architecture of
the network to handle various traffic loads,

CsII.1l20

R o M,

TSP), R 8 P

! ‘ Program Task Structure

)

The following tasks will exist throughout the execution of the
simulatiion:

The CALL PROCESSOR will be represented by a task.

Each LINE HANDLER will be represented by an iduntical task.

L) []
Ll] . ¥
|

Each telephone will be represented by a PHONE task.

Calls will be generated by a DRIVER task.

Each call will be represented by a dynamically allocated CALL
task, which will communicate with the PHONE tasks involved. Such
tasks will terminate when the calls they represent are completed.

The control signals flowing through the network will be
represented by messages passed among these tasks.,

[CSIl.130

I
i
I
I
|
I

1]

[y—

*

MESSAGE

A single message type will be useful, so that all message handl-
ing can be done uniformly. We will use the following
declarations to define such a message type.

type MSG_TYPE is (NOISE, DIGIT, HOOK, STATUS, DETAIL);

type STATUS_TYPE is (RINGING, BUSY, DIALTONE, CONNECTED,
DISCONNECTED, COMPLETED, NOANSWER, PHONEFREE, NOTFREE);

type MESSAGE (KIND : MSG_TYPE) is

record
SENDER : INTEGER; -- to identify source
LINE NUM : INTEGER; -- sometimes needed

case KIND is
when NOISE => RING : BOOLEAN;
-- start phone ringing if TRUE
-- stop if FALSE
when DIGIT => DIGIT : INTEGER;
when HOOK => HOOK STATE : (ON, OFF);
when STATUS => STATE : STATUS TYPE;

when DETAIL => LENGTH : INTEGER; -- length of call
FROM : INTEGER; =-- calling line number
TO0 : INTEGER; -- number being called
HANGUP : INTEGER; -- which one hangs up
end case;

end MESSAGE;

CSII. 140

& imica g

e miny

Communication between Tasks

We want to send messages between tasks asynchronouslé so that,
for example, a LINE HANDLER need not wait until the CALL PROCES-
SOR has actually processed one of its messages before it can
receive a message from a PHONE. We will thus need tasks to han-
dle the mechanics of message buffering. Each task will have a
corgesp?nding message buffer task to handle its incoming com-
munication.

task type MESSAGE_BUFFER is
entry SEND (M : in MESSAGE);
-~ called by other tasks to send a message to the
-~ corresponding task
entry RECEIVE (M : out MESSAGE);
-~ called by the corresponding task to accept messages

end MESSAGE_BUFFER;

Since MESSAGE is a globally declared record type with variants to
represent all of the different kinds of messages which might be
used by any of the tasks, we need only write one message buffer-
ing task.

CSII1.150

Simulation Primitives

To “implement a simulation capability, we need routines to

maintain an event list, to keep track of a simulation time and to

allow tasks to be scheduled for execution. In this particular
problem, the only scheduling primitive needed by the tasks
representing the various system components is hold, which allows
a given task to suspend its execution for a "fixed amount of
simulation time.

The simulation routines will be implemented as a package. Any
tasks wishing to use hold must have previously been assigned a
task identifier by the simulation package. A procedure will be
available in the package for this package.

package SIMULATION is
type TASK ID is private;
procedure GET ID (ID : out TASK ID);
-- used to ask for a task identifier
procedure RETURN ID (ID : in TASK ID);
-- used by dynamic process when they terminate
procedure HOLD (ID : in TASK ID; TIME : in INTEGER);
~- TIME is milliseconds of simulation time
pProcedure RECEIVE_MESSAGE (BUFFER : in MESSAGE_BUFFER;
M : out MESSAGE);
-- called by a task when it wants to remove a
~-- message from its buffer
private
type TASK 1D is new INTEGER;
end SIMULATION;

The RECEIVE_MESSAGE procedure is necessary in order to allow the
simulation package to know about those tasks which are suspended
waiting for message, as well as those suspended by calls to hold.

CS11.160

Main Program Structure

procedure SWITCH (NUM_LINES : INTEGER; -- not greater than 8999

RUN LENGTH : INTEGER) ~-- simulation time
is -

-- message declarations (as on earlier slide) go here

task type MESSAGE_BUFFER is
entry SEND (M : in MESSAGE);
entry RECEIVE (M : out MESSAGE);
end MESSAGE_BUFFER;

package SIMULATION is
. == as on previous slide
end SIMULATION
task CALL_PROCESSOR;
task type LINE HANDLER is
entry STARTUP (INDEX : INTEGER);
end LINE_HANDLER;

task type PHONE is
entry STARTUP (INDEX : INTEGER);

end PHONE;
task type CALL; -- these are allocated dynamically
task DRIVER; -- generates calls

CSII.1l70

e —

S Py ey ¢ O

l“’

L]

— ” w T 1

Main Program (continued)

-- declarations of constants and variables
HAX_LINE_NUM ¢ constant INTEGER := NUM_LINES - 1;

MAX ._HANDLER : constant INTEGER := MAX LINE _NUM / 10 + 1;
-- maximum of ten lines per handler

-- Phone numbers will be represented by four digits.

-- The first three digits minus 100 will be the handler number.
-- The fourth digit will be the line number belonging to

-- that handler. The smallest phone number is 1000,
corresponding to line 0 of handler 000.

HANDLERS : arvay (0..MAX HANDLER) of LINE_HANDLER;
HANDLER BUFFERS : array(o..MAx HANDLER) of MESSAGE_BUFFER;

PHONES : array (0..MAX LINE NUM) of PHONE;
PHONE_BUFFERS H array(ﬁ..MAx LINE _NUM) of MESSAGE BUFFER-

PROCESSOR_BUFFER : MESSAGE BUFFER;
DRIVER_BUFFER : MESSAGE_BUFFER;

use SIMULATION; ~- needed in main program body
MAIN_TASK : TASK_ID;

~-- Bodies of tasks and the SIMULATION package would go here

CSII.180

-r-—o...-v.‘..‘.,...,w".,‘.w-m Rsp N R R T T — e N —
g enad T e Y (T W v, W - i s

TPy ey N R

[T—— [T —
. ' ’

Main Program (continued)

begin =-- body of SWITCH

-~ send buffer indices to line handler and call receiver tasks
for I in 0..HAX_LINE_NUM loop

PHONES(I) .STARTUP (INDEX => I);
end loop:;

for I in 0..MAX HANDLER loop
HANDLERS (1) .STARTUP (INDEX => I);
end loop;

-- wait for RUN LENGTH simultation time to elapse
GET_ID (MAIN_ TASK);
HOLD (MAIN_TASK, RUN_LENGTH);

-- Produce statistics and terminate all tasks

end SWITCH;

CSII1.190

0 ot 5 81

wprr o~ oo

Body of MESSAGE_HANDLER

task body MESSAGE_HANDLER is
We will assume the availability of a generic package
-- called LINKED LIST, which is much like SORTED LIST
-- except that there are no priorities involved and
-- insert puts the new item at the end of the list.

package MESSAGE LIST is new LINKED_LIST(MESSAGE);
use MESSAGE_LIST;

MESSAGES : LIST;
COUNT : INTEGER := 0;

begin
CREATE (MESSAGES);

loop\-- no exit from this loop except by termination
select

when COUNT > 0 =>
accept RECEIVE (M : out MESSAGE) DO
NEXT ENTRY (MESSAGES, M);
COUNT := COUNT - 1;
end RECEIVE;
or accept SEND (M : in MESSAGE) do
INSERT (MESSAGES, M);
COUNT := COUNT + 1;
end SEND;
or when COUNT = 0 => terminate;
end select;
end loop;

1.
.,
B
H

H

)
I
1
; .

end MESSAGE_BUFFER;

CsIl1.200

Body of SIMULATION

package body SIMULATION is

-- Since the event list is a shared data structure, a task will be
-- used to synchronize access to it.
task LIST HANDLER is
entry ADD ENTRY (ID : TASK ID; TIME : INTEGER);
entry ADVANCE_TIME; -
end LIST_HANDLER;

-- A task will be used to manage task ids, again because of
-- shared data structures;
task ID MANAGER is
entry GET_ID (ID : out TASK ID);
entry RETURN_ID (ID : in TASK_ID);
end ID_MANAGER;

-- A task will be necessary to keep count of the number of
-- tasks suspended, in order to know when to advance the
-- simulation time.
task COUNTER is

entry INCREMENT;

entry DECREMENT;

entry INCREMENT TOTAL;

entry DECREMENT TOTAL;
end COUNTER; -

-- A task type is introduced to implement task suspension.
task type SIGNAL is

entry SEND;

entry WAIT;
end SIGNAL;

MAX_TASK_ID : constant TASK_ID := MAX_LINE_NUM * 2;

SIGNALS : array (l..MAX _TASK_ID) of SIGNAL;
-- one for each task which could be suspended

task body SIGNAL is
begin
loop
accept SEND;
accept WAIT;
end loop;
end SIGNAL;

CsIl.2i0

e T — - R ahclanindeiae. i

Py ey pue N NN S

e am—— St § L]
. ’ .]

SIMULATION (continued)

procedure GET_ID (ID : out TASK ID) is
begin -

ID MANAGER. GBT ID (ID);

COUNTER. INCREMENT _TOTAL;
end GET_ID;

procedure RETURN_ID (ID : in TASK 1ID) is

begin -
ID_MANAGER.RETURN_ID (ID);
COUNTER.DECREMENT TOTAL,

end RETURN_ID;

procedure HOLD (ID : TASK_ID; TIME : INTEGER) is
begin
LIST HANDLER.ADD ENTRY (ID, TIME);
COUNTER. INCREMENT;
SIGNALS(ID) .WAIT; -~ suspends this procedure until
-- ADVANCE TIME does a SIGNAL
COUNTER.DECREMENT; -
end HOLD;

procedure RECEIVE_MESSAGE (BUFFER : in MESSAGE_BUFFER;
M : out MESSAGE) is

begin
select
BUFFER.RECEIVE (M) ;
else -- no messages currently available

COUNTER. INCREMENT;
BUFFER.RECEIVE (M),
-- will cause suspension until a massage comes
COUNTER.DECREMENT;
end select;
end RECEIVE_MESSAGE;

Cs11.220

Ry

SIMULATION (continued)

task body LIST_HANDLER is
-- This task will use a package like SORTED LIST to implement
-- an event list, except that the items must be sorted in
-- ascending proirity order.
-= (The "priorities" are event times.)

package LIST PACKAGE is new ASCENDING SORTED LIST (TASK_ID);
use LIST_ PACKAGE;

bo) Bumi Semi Smm SN mmm

EVENT_LIST : LIST:
ID : TASK_ID;
SIM_TIME : INTEGER := 0; ~- simulation time
! begin
H CREATE (EVENT_LIST);
loop
select
accept ADD _ENTRY (ID :TASK ID; TIME : INTEGER) do
INSERT T{EVENT _LIST, ID, SIM _TIME+TIME);
end ADD _ENTRY;
or accept ADVANCE TIME;
NEXT ENTRY (EVENT LIsST, ID, SIM TIME),
. SIGNALS (ID) .SEND; -- awakens a task in HOLD
| end select;
: end loop:;
end LIST_HANDLER;

iy appars 5

[Sereen

]

[y

—nt

task body ID_MANAGER is
i NEXT TASK ID : INTEGER := 0;
ID_SET : array (l..MAX_TASK_ID) of range 0..MAX_TASK_ID;
begin
.. for I in 1..MAX TASK_ID- 1 loop
3 ID_SET(I) :=" I+1;"
. end loop;
ID_SET(MAX_TASK_ID) := 0;
1Y))
select
when NEXT TASK ID /= 0
accept GET_ID TID : out TASK_ID) do

L e e ke T
S vt

; 1 ID := NEXT _TASK_ID;
: - NEXT_TASK_TD :="ID_SET(NEXT_TASK_ID);
‘ end GET ID; ~
r or accept RETURN ID (ID : in TASK_ID) do
. ID SET(ID) := NEXT_TASK_ID;”

! NEXT TASK 1D := 1D;
end RETURN_ID;
end select;
end loop;
end ID_MANAGER;

[]
L] .

L

CS11.230

— i e i, oo, i il abian: o TR —— N N

SIMULATION (continued)

TS LI W I g

task body COUNTER is
TOTAL _TASKS, SUSPENDED TASKS : INTEGER := 0;
begin T -
loop
select
accept INCREMENT TOTAL do
TOTAL TASKS := TOTAL TASKS + 1;
end INCREMENT TOTAL;

or accept DECREMENT_TOTAL do

TOTAL TASKS := TOTAL _TASKS - 1;
end DECREMENT_TOTAL;

or accept INCREMENT do
SUSPENDED TASKS := SUSPENDED TASKS + 1;
if SUSPENDED TASKS >= TOTAL TASKS then
ADVANCE_TIME; -
end if;
end INCREMENT;

Ped i Sy pum NN BN BB =

[Ve e
. 1

or accept DECREMENT do
SUSPENDED_TASKS :
end DECREMENT;

SUSPENDED_TASKS - 1;

or terminate;
end select;
end loop;
end COUNTER;

end SIMULATION;

|

-t

I
I
|
|

L G e

CSII.240

Body of LINE_HANDLER;

The following task body provides a simple example of the use of
the simulation and message buffering capabalities by a task which
represents one of the simulation objects.

task body LINE_HANDLER is

M : MESSAGE;
MY NUMBER : INTEGER; -- used as message buffer index
ME : TASK_ID; -- for identification to SIMULATION package

HANDLING_TIME : constant := 50; -- units of simulation time
use SIMULATION;

begin
accept STARTUP (INDEX : INTEGER) do
MY_NUMBER := INDEX;
end STARTUP;
GET_ID (ME);
loop ~- loops forever, simulating a line handler
RECEIVE_MESSAGE (HANDLER BUFFERS (MY NUMBER), M);
case M.KIND is - -
when DIGIT | HOOK =>
-- line event; pass on to call processor
M.SENDER := MY NUMBER;
PROCESSOR_BUFFER.SEND (M) ;

when STATUS | NOISE =>
-- from call processor; send on to phone
M.SENDER := MY_NUMBER;
PHONE_BUFFERS (M.LINE_NUM) .SEND (M);
when DETAIL => null; -- should never occur
end case;

-- simulate processor time used to handle message
HOLD (ME, HANDLING_TIME);
end loop;

end LINE_HANDLER;

CSI11.250

-y Ml e

SYNTAX

e BN s b

¢t e Gmed eum I EER

STATEMENTS

SUB. 3RAMS

PACKAGES

e Sl S R

[Jpu——"y
» ‘

1'

4

SUMMARY

designed for readability

DECLARATIONS and TYPEE

factorization of properties, maintainability
abstraction, hiding of implementation details
reliability, due to checking

floating point and fixed point, portability
access types, utility and security

assignment, iteration, selection, transfer
uniformity of syntax (comb structure)
generally as simple as possible

(e.g., iteration control)

procedures and functions

logically described parameter modes
(as opposed to definition by
implementation description)

overloading

modularity and abstraction
structuring for complex programs
hiding of implementation, maintainability
major uses:
. named collections of declarations
. groups of related subprograms
. encapsulated data types

| g

gt

[et
. v

e g

b —— 4 —

.

gt

PN pemt ey

LIBRARIES

TASKING

EXCEPTION

- separate compilation
~- generics
- program development environment

- can be done completely with Ada features

- single concept for intertask communication
and synchrenization

- interface with external devices

- designed for efficient implementation

HANDLING

- for reliability of real-time systems

- standard vs. user-defined exceptions

- meant mainly for handling errors
(rather than as a general programming
technique)

MACHINE DEPENDENCIES

- representation specifications
- interface with other languages
- low level 1/0

Mi—dm-

i]
Ada IS DESIGNED FOR
' WRITING LARGE PROGRAMS
T
i
§~ Ada HAS FEATURES TO ALLOW
) SUITABLE EXTENSIONS FOR
L A PARTICULAR APPLICATION
‘% .
2 Ada IS A DESIGN LANGUAGE
?
|
i-
P
3 I
i

What haven't we discussed ?22?

GO TO statements

Representation Specifications

rmvmmn--l
1

Details of Generics

1

[Y

Input-Output

Pragmas

Inline procedures

Interface to other languages

$es Bl By el DU R WN

[Sp——
' i

HELBAT BIFF

HUMAN
ENGINEERING
LABORATORIES
BATTALION
ARTILLERY
TeST

BATTLEFIELD
IDENTIFICATION
FRIEND

R

Fot

T ——— e

T I e A Fret

PROBLEI STATEMENT

FIRE AT (AND HIT) ENEMY TARGETS

FUNCTIONAL SPECIFICATION (PAR.IAL)

INPUT FROM = RADAR UNIT
HUMAN OPERATOR
OQUTPUT TO = HUMAN OPERATOR
REMOTE ARTILLERY
LOCAL WEAPON CONTROL
OPERATOR DISPLAY ~ PLasma ScoPE
(NOMINALLY 9260 BAUD) , .
OPERATOR INPUT DEVICE - ToucH PANEL

CSIII.020

RADAR INPUT

DMA (DIRECT MEMORY ACCESS) DUMP, EVERY 20 MILLISECONDS
ON INTERRUPT FROM RADAR HARDWARE. OF 19 16-BIT "WORDS".

FORMAT:

WORD(S)

o

L r £ & £ W NN N = e

18

.17

BIT(S) MEANING
0.. 13 ANTENNA AZIMUTH
0.. 1 1-ST BEACON ID
2.. 13 1-ST BEACON RANGE
0.. 1 2-ND BEACON 1D
2.. 13 2-ND BEACON RANGE
0..13 CENTER OF SCAN SECTOR
0 IN INTERROGATE MODE ?
1 SEARCH RANGE (SHORT, LONG)
2.. 3 WIDTH OF SCAN SECTOR
.. 5 DIRECTION OF SCAN
& .. 7 RATE OF SCAN
0 ..199 RANGE PROFILE
0.. 15 ERROR_FLAG
CS111.03C

B e 4 A

PLASMA SCOPE DISPLAY
for
HELBAT BIFF OPERATOR

b ———aa
.

?&} Ne3T)
AIM P / LEFT AIM DON /7 RIGHT
first error message line
m 09 w AZ . M
. SKIN RGO SPLSH
AIM / MSG CONTROL

uth ... HO'E | | PARK
messooe overflow line

ERASE START

ERR

POLICY - destroy eneny targets

locate a target -

If 1t's not friendly, ‘ A
then destroy it

PERCEPTOR PROCESSOR EFFECTOR
perception decide on oouse
of basis of chanoe
external policy ad in
- ad perception external or
intermal what action internal
states to toke states

Simplified Actor Model

~ 30 3 30 % = DO

PERCEPTOR PROCESSOR EFFECTOR
perception decide on oquse
of basis of chanoge
AT edemal mlived [1 —
: - ad perception external or '
: internal what action intemal :
. states to toke states g
: :
;)
i 1
! |
kL m e e m e e e~ e e m e~ m e —m o e e e e e . ———

Simplified Actor Model

~ 33032330 —< 30O

t 30 3 30N e~ D0

PERCEPTOR PROCESSOR EFFECTOR
perception decide on cause
of basis of change
Ko} external oiivod |2 in ~>
l r ad perception external or !
; intemal what action internal :
‘ states to toke states g
: :
| \
t b]
: |
L e e - e e e~ memm s m e, ————— e — . -~ eom— o ——ee
Simplified Actor Model

30383 30 =< 30®

t 300330 =< 30

POLICY
A
PERCEPTOR PROCESSOR EFFECTOR
perception decide on oouse
of basts of chonee .
Koy ;I external policy ad in 7
X od perception external or '
: internal what action internal :
. states t0 toke states g
; i
1 1
: :
Y-
~ Simplified Actor Model

* 308 30 =L IO

O Lo > OCEVC W

M\

P > = e e e e - -

- e e e -

(effector)

(processor)

(perceptor)

- e Gre S G ke EhGare S G T G G ChEe EE O s W GRS Gy A R e e e

L L

O C o= i.O0OCEOC W

- e e ey

[-

e T—

. .
fo——y

b bed el et

aatataas L

ENP .

e . s

— e

ot Gl Seeei Geed OGN IR

§ mman
.

L]

ooy

Sr g P

PROCESSOR IMPLEMENTATION

FOR THIS SYSTEM: HUMAN DECISION MAKER

ATTRIBUTES:

INPUT - INFORMATION RATE ?
PERCEIVABLE STIMULI ?

QUTPUT =~ INFORMATION RATE ?
MODES (HANDS. VOICE« ...

SYSTEM ~ ALERTNESS
RESPONSE TIME
PROFICIENCY

(EMBEDDED HUMAN SYSTEM)

)

[

L A ~no, "

PR IO

[; e

QO C >G> .0 Cc E OV C W

/N

F ==~ = w s mrm o

(effector)
PLASMA
SCOPE

PERCEPTOR
IMPLEMENTATION
(processor)

DISPLAY
PREPARATION

(perceptor)

- e har G Cn e T EES e e S O CE S TR T e G YUl e T TE G S A G T AGEEE e W e

T
2
T
_A----

Ve > .OoOCc EVC W

- s om oo o

303 350N =< 3O

DISPLAY
PREPARATION
(percentor) (processor) (effector)
relate
tumn displ
radar _ bt serd
to display Into - t
! relate cxrrands for Plos
' operator Plasm Scope
: actions to Scope
display (buffer)

- Shar W e e P ar o e T T kG EAD GG G A Ao T S G E WS N e

L
]
'
]
{
)
t
t
¢
H
)
'
|
'
'
]

A 4

~ 30 3 D0 ™ =L 30

D03 D0V =<LZDI3I0

EFFECTOR
IMPLEMENTATION
(perceptor) (processor) (effector)
interpret
WEAPON
info from
TOUCH touch pael,

o | s > TRAWSMITIER >
: | PAEL choose :
' apnrooriate (operator’s :
. operations)
: display) '
] !
{ [}
5 i

~ 330 3 30 % =< 30

[
. :

n:!oa:lo'wv—<:!m

INTERPRETER
IMPLEMENTATIOR

(perceptor) { processor)

(effector)

touch conmond

___% panel __J
interface

dispotcher

weapon
control

_interfoce
transmitter

interfoce

(opergtor
disolay

interfoce)

F
1
]
)
'
)
t
!
'
L]
]
|
'
'
L
)
'
'
!
)
\
|
'
]
1
|
)
L)
|
[}
'
'
'

.

§
L}
!
L}
{
'
'
'
'
1
1
|
'
:

AN
/7

'ﬂﬂOBSOﬂO-(:O

s

Piad Pute Qi Pmnd DI R
% : ‘
i 3
i‘z
i

[e—— Sty [——— Sonanin §
. . . B v - °

[

Pt g Biined Sl ud B D o

e Tt oS

TOUCH PREL

RADAR RADAR
———) DISPLAY
INTERFACE GENERATOR
PLASMA CoTAD
SCOPE FOR'WTTER
WRITER

TRANS-

'HELBAT BIFF

[]

PERCEPTOR =
SENSOR = (RADAR)
OPERATOR'S DISPLAY HANDLER
DispPLAY DEvICE CoMMAND FORMATTER
BUFFER
DisPLAY DEVICE WRITER
ENVIRONMENTAL SENSOR INFORMATION
SENSOR INTERFACE
SENSOR INFORMATION DISPLAY GENERATOR
INTERNAL INFORMATION FROM OPERATOR COMMANDS
DispLAY Device - (PLASMA SCOPE)

F R T Tl o ey B)
boed Gmui Sy PEN S e a——
J

PROCESSOR - (HUMAN OPERATOR) i

EFFECTOR -
OPERATOR INPUT DEVICE = (TOuCH PANEL) :
OPERATOR COMMAND HANDLER ' j
CoMMAND DISPATCHER .
0PERATOR INPUT DivICE READER g
DispLAY AND EFFECTOR CoNTROL '
CURSOR AIMING ;

L CoM“AND INDICATOR LIGHTING 1
| WEAPON AIMING :
¢ TARGET LOCATION TRANSMISSION HANDLER :
L WEAPON y
: TRANSMITTER

- OPERATOR'S DISPLAY HANDLER

[
. »

A .

CSIII.180

L
B
|

WITH LINKED_LIST_FIFO_OQUEUE. RING_QUEUVE s
PROCEDURE HELBAT_BIFF 1s

bod Gouni i OmN D =

t-=

-]

[

s
.

e

PACKAGE COMMON_DEFINITIONS IS
END COMMON_DEFINITIONS:

PACKAGE OPERATOR_DISPLAY_HANDLER IS
PACKAGE DIsPLAY_Device_CoMMAND_FORMATTER IS

PACKAGE DISPLAY_DEvICE_COMMAND_BUFFER 1S
NEW RING_QUEUE (...)3

=- DECLARATIONS OF PROCEDURES THAT HANDLE
== CODING AND BUFFERING OF COMMANDS FOR
== OTHER TASKS

END DIsPLAY_DEvICE_COMMAND_FORMATTER:

TASK TYPE DISPLAY_DEVICE_WRITER:
PACKAGE SENSOR_INFORMATION IS
PACKAGE SENSOR_DEFINITIONS IS

END SENSOR_DEFINITIONS:

TASK TYPE SENSOR_INTERFACE IS
-- DECLARATIONS OF ENTRIES AND
-- REPRESENTATION SPECIFICATION
END SENSOR_INTERFACE:

TASK TYPE SENSOR_INFORMATION_DISPLAY_GENERATOR:

END SENSOR_INFORMATION;
END OPERATOR_DISPLAY_HANDLER:

CSIII.1%0

toed bl Heed e N BN e e

)

'.m

g GED Gl peel e ey

PACKAGE OPERATOR_COMMAND_HANDLER IS , i
PACKAGE OPERATOR_COMMAND_DEFINITIONS IS
END OPERATOR_COMMAND_DEFINITIONS J

............. TTeEmTT ki
. TASK TYPE CoMMAND_DISPATCHER IS
END COMMAND_DISPATCHER s

TASK TYPE OPERATOR_INPUT_DEVICE_READER:

PACKAGE DISPLAY_AND_EFFECTOR_CONTROL IS
PACKAGE AIMING_INFORMATION IS
END AIMING_INFORMATION:

TASK TYPE AIMING_CURSOR_OPERATIONS:
TASK TYPE CoMMAND_INDICATOR_LIGHTING:

TASK TYPE WEAPON_AIMING:
TASK TYPE TARGET_LOCATION_TRANSMISSION_HANDLER:

END DisPLAY_AND_EFFECTOR_CONTROL
END OPERATOR_COMMAND_HANDLER

- PACKAGE BODIES ARE SEPARATELY COMPILED

TYPE DISPLAY_WRITER IS ACCESS
OPERATOR_DISPLAY_HANDLER.DISPLAY_DEVICE_WRITER:
-~ NOTE: THIS TYPE POINTS TO TASKS

PLASMA_SCOPE_WRITER : DISPLAY_WRITER;

BEGIN -- BODY OF HELBAT_BIFF

CSIII.200

BEGIN -- HELBAT_BIFF
LOOP
BEGIN -- ACTIVATE TASKS IN PROPER ORDER
DELAY 10 * SECONDS:
PLASMA_SCOPE_WRITER := NEW DISPLAY_WRITER:
END;
END LOOP;
END HELBAT_BIFF;

CSIII.210

PACKAGE SENSOR_DEFINITIONS IS

FOURTEEN_BITS_FUIL : CONSTANT INTEGER :+ 16#3FFF#;
SUBTYPE RA2 IS INTEGER RANGE O..FOURTEEN_BITS_FULL:

SUBTYPE RANGE_BIN IS INTEGER RANGE 0..399;

TYPe DirecTIoN IS (NONE. LEFT _TO RIGHT, RIGHT_TO_LEFT,

SEARCH_LIGRT)Y

FoR DIRECTION uSE (NONE => 0.
LEFT TO RIGHT => 1§,
RIGHT TO_LEFT => 2,
SEARCH_LIGHT => 3);

TYPE PROFILE_OF_RANGE IS

ARRAY [RANGE_BIN'FIRST .. RANGE_BIN'LAST) OF BOOLEAN:

TYPE RADAR_INPUT IS

RECORD
ANTENNA_AZIMUTH : Raz;
FIRST_BEACON_ID : INTEGER RANGE 0..3:
FIRST_BEACON_RANGE : INTEGER RANGE 0..4095;
SECOND_BEACON_ID : INTEGER RANGE 0..3;:
SECOND_BEACON_RANGE : INTEGER RANGE 0..4095:
CENTER_OF_SCAN_SECTOR : RAZs
IN_INTERROGATE_MODE : BOOLEAN:
SEARCH_RANGE : INTEGER RANGE 0..1:
WIDTH_OF_SCAN_SECTOR : INTEGER RANGE 0..3:
DIRECTION_OF_SCAN : DIRECTION:
RATE_OF_SCAN : INTEGER RANGE 0..3;
RANGE_PROFILE : PROFILE_OF_RANGE s
ERROR_FL AG : INTEGER RANGE O..316#FFFF#:
END RECORD:
CSIII.230

' PACKAGE SENSOR_DEFINITIONS IS
FOURTEEN_BITS_FULL : CONSTANT INTEGER := 16#3FFF#:
' SUBTYPE RAZ IS INTEGER RANGE O..FOURTEEN_BITS_FULL:
l SUBTYPE RANGE_BIN IS INTEGER RANGE 0..199:
TYPE DIRECTION IS (NONE, LEFT TO_RIGHT. RIGHT_TO_LEFT,
SEARCH_LIGRT) %
l FOR DIRECTION USE (NONE => (0,
EFT TO_RIGHT => {,
RIGHT_TO_LEFT => 2,
| SEARCF_LIGHT => 3),
TYPE PROFILE_OF_RANGE IS
] ARRAY { RANGE_BIN'FIRST .. RANGE_BIN'LAST) OF BOOLEAN:
TYPE RaDAR_INPUT IS
- RECORD
N ANTENNA_AZIMUTH : Raz;
FIRST_BEACON_ID : INTEGER RANGE 0..3;:
. FIRST_BEACON_RANGE : INTEGER RANGE 0..4095;¢
; SECOND_BEACON_ID : INTEGER RANGE 0..3: #
2 SECOND_BEACON_RANGE : INTEGER RANGE 0..4095:
CENTER_OF_SCAN_SECTOR : RAZ;
IN_INTERROGATE_MODE : BOOLEAN;
SEARCH_RANGE : INTEGER RANGE 0..1:
WIDTH_OF_SCAN_SECTOR ¢+ INTEGER RANGE 0..3;:
DIRECTION_OF_SCAN : DIRECTION; '
RATE_OF_SCAN : INTEGER RANGE 0 3.
RANGE_PROFILE : PROFILE_OF_RANG
ERROR_FLAG : INTEGER RANGE 0 16#FFFF#

END RECORD:

{
{
I CSIII.230

Aiciiiied . il s

r'!llinu.;kmw“ﬂ_‘

4
' -- PACKAGE SENSOR_DEFINITIONS (CONTINUED)
FOR RADAR_INPUT USE

' RECORD
ANTENNA_AZIMUTH AT O * WORD INTEGER RANGE 0..13;
FIRST_BEACON_ID AT {1 * WORD INTEGER RANGE 0..1:
FIRST_BEACON_RANGE AT 1 v WORD INTEGER RANGE 2..13;:

l SECOND_BEACON_ID AT 2 ® WORD INTEGER RANGE 0..1:

. SECOND_BEACON_RANGE AT 2 ® WORD INTEGER RANGE 2..13:

CENTER_OF_SCAN_SECTOR AT 3 * WORD INTEGER RANGE 0..13:

l IN_INTERROGATE_MODE AT 4 o WORD INTEGER RANGE 0..0:
SEARCH_RANGE AT 4 v WoRD INTEGER RANGE 1..1:
WIDTH_OF_SCAN_SECTOR AT Y4 » WORD INTEGER RANGE 2..3:
DIRECTION_OF_SCAN AT 4 * WORD INTEGER RANGE Y..5:

I RATE_OF_SCAN AT 4 » WORD INTEGER RANGE 6..7%
RANGE_PROFILE AT 5 ¢ WORD INTEGER RANGE 0..199;
ERROR_FLAG AT 18 * WORD INTEGER RANGE 0..15:

I END RECORD:

1 RADAR_BUFFER : RADAR_INPUT:

I RADAR_BUFFER_ADDRESS : CONSTANT INTEGER

1 := RADAR_BUFFER'ADDRESS: i

z RADAR_INP%E~LENGTH : CONSTANT INTEGER '
i i

.. END SENSOR_DEFINITIONS:

\
I CSI11.220

I
l
i
|
1
1
]
I

‘ et o B B T T e T e S S P SUIE S |

e e - 359eronme

TASK BODY SENSOR_INTERFACE 1S
USE SENSOR_ DEFINITIONS:

PROCEDURE CLEAR_THE_DMA_ AND_THE_LATCH IS ... END:
PROCEDURE SET_UP_THE_DMA_FOR_THE_NEXT_BURST IS ... END:
PROCEDURE SET_THE_LATCH_FOR_THE_NEXT_BURST IS ... END3

PRAGMA PRIORITY(SYSTEM'MAX_PRIORITY):

BEGIN

LooP
ACCEPT DMA_FINISHED_INTERRUPT:

CLEAR_THE DMA_AND_THE_LATCH:
SET_UP_THE_DMA_FOR_THE_NEXT_BURST:

SELECT
ACCEPT REQUEST_FOR_RADAR_INPUT(OUTPUT : OUT SENSOR_INPUT)

DO OUTPUT := RADAR_BUFFER:
END;

ELSE
SEND_ERROR_MESSAGE (RADAR_OVERRUN);
END SELECT:

SET_THE_LATCH_FOR_THE_NEXT_BURST

END LOOP
END SENSOR_INTERFACE s

CSIII.240

B ——— P ey e seery e~y

PROCEDURE CLEAR_THE_DMA_AND_THE_LATCH IS
USE Low_LEVEL_I0%

BEGIN
Senp_ConTROL (DMA, (CLEAR))

SEND_CONTROL (LATCH., (CLEAR))3
END CLEAR_THE_DMA_AND_THE_LATCH:

PROCED URE SET UP_THE_DMA_FOR_THE_NEXT_BURST IS
USE LOW_LEVEL_IO:
BEGIN
Seno_ConTrOL DMA. (S
Senp_CONTROL (S
- SEND_COnTROL DMA (S
Senp_ConTROL _(DMA. (S
END SET_UP_THE DMA_FOR_TH

ET ADDRESS. RADAR BUFFER_ACDRESS))i
ET.COU NT. -RADAR_INPUT_LENGTH))3
ET DIRECTION. INAARDS))
TART))s

E_NEXT_BURSTs

PROCEDURE SET_THE_LATCH_FOR_THE_NEXT_BURST IS
uSE Low_LEVEL_JO;

BEGIN
SEnp_CoNTROL (LATCH, (START))3

END SET_THE_LATCH_FOR_THE_NEXT_BURSTs '

e—
] 1]

PN Gemeg pumy ey ey P

CSI1I.250

,\

bt Yoiid Qund Gnf SN BER SN e

Somarng [y
. . . .

PN pumy pumg pamy ey e

PACKAGE OPERATOR_COMMAND_DEFINITIONS IS

TYPE OPERATOR INSTRUCTION b &
(DD N‘UDSN
HOHE CURSORS. PARK_CURSORS.
AIM RANGE CURSORS. AIH AZIMUTH_CURSORS.
TOGGLE AZIMUTH_OR_RANGE,
ACKNOWTEDGE_ERROR,
. AUTO ERASE. SLEw WEAPON.
§ TART. ARM 01 ARM.
URIHMPLEMENTED)

TYPE OPERATOR_COMMAND (INSTRUCTION : OPERATOR_INSTRUCTION) IS
RECORD
CASE INSTRUCTION IS
wHEN AIN_CURSORS =>
AIM_DIRECTION : SCREEN_DIRECTION:

DELTA_INDEX : COORDINATE_VALUE:
WHEN OTHERS - NULLs
END CASE s

END RECORD:

END OPERATOR_COMMAND_DEFINITIONS:

CSI111.260

o

oct i o e

Py ey pemy gy

m‘. Plamorand

SEPARATE (OPERATOR_COMIMAND_HANDLER)
TASK BODY OPERATOR_INPUT_DEVICE_READER IS

pnoczouaz CONVERT_THE_TOUCH_TO_A_COMMAND IS
X. Y : COORDINATE_VALUEs
COMMAND VECTOR : INTEGER RANGE 101 .. 16161

BEGIN
CASE COMMAND_VECTOR IS

WHEN 1023 => COMMAND := (HOME _CURSOR) ¢
WHEN 1403 => COMMAND := (PARK_CURSOR);

WHEN OTHERS => COMMAND := (UNIMPLEMENTED):
END CASE ¢

END CONVERT_THE_TOUCH_TO_A_COMMAND

BEGIN -- OPERATOR_INPUT_DevICE_READER

toop
READ_A_TOUCH;:
CONVERT_THE_TOUCH_TO_A conMANDs

CASE COMMAND .INSTRUCTION
WHEN ARM | DISARM UNIMPLEMENTED => NULL3

-= ARM AND DISARM ARE USED BY CONVERT_THE_TOUCH_
== TO_A_COMMAND TO ARM OR DISARM THE TOUCH PANEL INPUT

UHEN OTHERS => SEND_NEXT (COMMAND)3
- REQUEST RENDEZVOUS WITH OPERATOR_COMMAND_HANDLER

== TO PASS A GOOD COMMAND TO IT

END CASE:

END LOOP;:
END OPERATOR_INPUT_DEVICE_READER:

CSIII.270

.

TASK BODY COMMAND_DISPATCHER IS

USE COMMAND_QUEUE. OPERATOR_COMMAND_DEFINITIONS:
BEGIN =- COMMAND_DISPATCHER

LOOP

SELECT
ACCEPT SEND_NEXT (COMMAND : IN OPERATOR_COMMAND)3
DO LATEST_COMMAND :*= COMMAND:
END SEND_NEXT:
INSERT (T LATEST COMMAND)3
ELSE
SELECT

L) - a

WHEN (CURRENT_COMMAND.INSTRUCTION = AIM RALGE_CURSOR)

OR (CURRENT_COMMAND. INSTRUCTL&V AZIMUTH CURSOR)
\

OR {CURRENT_COMMAND_INSTRUCTION = HOME_CURSORS)
OR (CURRENT_COMMAND_INSTRUCTION = PARK_CURSORS)

R (CURRENT_COMMAND_INSTRUCTI
OR ICURRENT_CO FOGALE. A2 THUTH_OR_RANGE)
)

ACCEPT ACOQUIRE_NEXT_CURSOR_OPERATION
(COMMAND : OUT OPERATOR_COMMAND)
DO COMMAND := cuan:ut COMMAND :
END ACQUIRE_NEXT_CURSOR_OPERATION:

END SELECT s
END SELECT
END.Léoﬁt
END COMMAND_DISPATCHER:

bond Gt Gesd A SN EER BN S e e

 2on BN et |

CSIII.280

I ong Punf Puny P femd Py

|

